Multiple Regression

More than one explanatory (independent) variable, one response (dependent) variable

\[\hat{y} = b_0 + b_1x_1 + b_2x_2 + \ldots + b_kx_k \quad k=\#\text{independent variables} \]

\(b_i = \text{change in } Y \text{ when } x_i \text{ changes by one unit and all the other } x \text{ variables are held constant} \)

\(R^2 = \% \text{ of variability in } Y \text{ that is explained by the model} \)

as you add variables, \(R^2 \) can only go up - don’t want to add noise

Adjusted \(R^2 \) - penalty for each extra variable in the model

Could choose a model that maximizes adjusted \(R^2 \)-square

Significance Tests

A) To see if the model as a whole is significant

1) Let \(\beta_i \) be the population slope for variable \(X_i \)

\[H_0: \beta_1 = \beta_2 = \ldots = \beta_k = 0 \]

\(H_1: \text{at least one } \beta_i \neq 0 \)

\[Y = \beta_0 + \beta_1x_1 + \beta_2x_2 + \ldots + \beta_kx_k + \epsilon \quad \text{EN N}(0, \sigma^2) \]

2) \(\alpha = .05 \)

3) F-test compute in JMP

4) get p-value from JMP

5) reject \(H_0 \) if p-value < \(\alpha \)

6) draw conclusions in context

"The model is helpful"

Ex: There is evidence of a linear relationship between latitude/longitude coordinates and temperature.

Ex: Not enough evidence of a linear relationship between either latitude or longitude and temperature

"The model is not helpful"
B) To see if a particular variable is significant, when all the others are included in the model.

1) \(H_0: \beta_j = 0 \) when all other variables are included in the model.
 \(H_1: \beta_j \neq 0 \) \(\beta_j \) is the population slope for variable \(X_j \)

2) \(\alpha = .05 \)
3) t-test \(df = n - k - 1 \)
4) get p-value from JMP
5) reject \(H_0 \) if \(p < \alpha \)
6) draw conclusions

Example: Conclude that there is a linear relationship between temperature and latitude when longitude is in the model.

Model Building

The basic idea of model building is that you want to get the most accurate predictions with the smallest possible prediction variance.

To increase predictive accuracy:
- add relevant variables
- transform variables

To decrease predictive variance:
- remove statistically insignificant variables
- remove highly correlated "independent" variables
- use as few terms as possible

Need to balance these:
- Adjusted R\(^2\)
- Stepwise t-tests

Logistic Regression

What if we have a binary (nominal, 2 category) response? Can't model directly with linear regression.

Consider the probability \(P \)

Model the logistic transformation \(\log \frac{P}{1-P} \) spreads the probability to the whole real line.

Logistic regression: \(\log \frac{P}{1-P} = b_0 + b_1 x_1 + b_2 x_2 + \ldots + b_k x_k \)