Ambidextrous children 'more likely to be hyperactive'

Children who write with both hands are more likely to struggle in school and have hyperactivity disorder symptoms, research suggests.

A study by scientists from Imperial College London found ambidextrous children were twice as likely to struggle as their classmates.

They were also more likely to have difficulties with language.

Experts told Paediatrics journal the differences might be down to the brain’s wiring.

But they said much more work was needed to explore this.

Lead researcher Dr Alina Rodriguez said: “Mixed-handedness is intriguing - we don't know why some people prefer to make use of both hands when most people use only one.”

Ambidextrous

Around one in every 100 people is ambidextrous, or mixed-handed.

The study looked at nearly 8,000 children from Northern Finland, of whom 87 were mixed-handed.

Mixed-handed children aged seven and eight were twice as likely as their right-handed peers to have difficulties with language and to perform poorly in school.

When they reached 15 or 16, mixed-handed adolescents were also at twice the risk of having symptoms of Attention Deficit Hyperactivity Disorder (ADHD).

And they tended to have more severe symptoms of ADHD than their right-handed schoolmates.

They also reported having greater difficulties with language than those who were left or right-handed.

This is in line with earlier studies that have linked mixed-handedness with dyslexia.

Hard-wired

Experts know that handedness is linked to the brain’s left and right halves or hemispheres.

Research has shown that where a person's natural preference is for using their right hand, the left hemisphere of their brain is more dominant, which is where the centre for language lies.

Scientists have suggested that ADHD could be linked to having a weaker function in the right hemisphere of the brain.

Dr Rodriguez said it was possible that brain differences might explain the findings.

But she cautioned: "Our results should not be taken to mean that all children who are mixed-handed will have problems at school or...

SEE ALSO

ADHD brain chemistry clue found
06 Sep 09 | Health
Drug 'benefit' for ADHD children
06 Sep 09 | Devon
ADHD 'queue jumpers' spark debate
01 Sep 09 | Health

RELATED BBC LINKS

Headroom: ADHD

RELATED INTERNET LINKS

Pediatrics
ADDISS
SANE

The BBC is not responsible for the content of external internet sites

TOP HEALTH STORIES

Stem cell method put to the test
Hospitals 'eyeing private market'
Low vitamin D 'Parkinson's link'

MOST POPULAR STORIES NOW

Two hurt in giant lizard attack
Earth-like planets just got closer
Activision claim thwarts North Korea
Heavy fighting hits Syrian capital
Cat replaces iron in Monopoly game
US expands sanctions against Iran
CIA drone base in Saudi revealed
Supermarkets withdraw beef products
Children who are mixed-handed will have problems at school of develop ADHD.

"We found that mixed-handed children and adolescents were at a higher risk of having certain problems, but we'd like to stress that most of the mixed-handed children we followed didn't have any of these difficulties."

Marjorie Wallace, chief executive of the mental health charity SANE, said they had been carrying out similar work.

"In particular, Professor Tim Crow and his team are exploring the idea that brain asymmetry and handedness may play a role in the development of language and the origins of psychosis.

"All research which investigates possible links between brain difference and behaviour is vital to increase our understanding of many conditions, including mental health problems."

BOOKMARK WITH:

Delicious Digg reddit Facebook StumbleUpon

Natural ADD/ADHD Relief
Relieve ADD/ADHD Symptoms Fast with Safe & Homeopathic Synaptol®.
Synaptol-for-ADHD.HelloLife.net

Top 3 ADHD Signs
Warning: If Your Child Has These 3 Signs They Have ADHD. Learn More!
KidCity.com/ADHD

Exercise Your Brain
Games You Didn't Know Existed to Fight Brain Decline and Aging.
www.lumosity.com

FEATURES, VIEWS, ANALYSIS

- **Ghost town**
 Has China's housing bubble burst?

- **The guerilla plant**
 How the world's oldest; clove tree defied an empire

- **Walking away**
 Why Royal Ballet principal Sergei Polunin quit

MOST POPULAR NOW
The most read story in Africa is: Saudi 'reprieve' in sorcery case
Experiment or observational study?

Randomized controlled double blind experiment.

allows determination of causation and confounding factors are the same for treatment & control group.

other sorts of experiments are possible.

Sample. 8000 kids from northern Finland

- likely to be a representative sample
 (as opposed to a biased sample).

Retrospective cross-sectional prospective

identify participants now, follow them forwards in time
1 in 100 is ambidiextrous.

Population

\[p = \frac{1}{100} \]

Sample size \(n \)

amb. people in sample

follows the Binomial distribution.

A Pareto chart.

A "histogram for a categorical variable"

categorical

qualitative

nominal ordinal

quantitative

discrete continuous
Probability.

Simple event - ambiguous or hypoactive, \(A \) or \(H \).

Sample space - set of all possible simple events:

\[\{ AH, A\bar{H}, \bar{A}H, \bar{A}\bar{H} \} \]

Event - set of simple events.

If each simple event is equally likely, each has probability \(\frac{1}{n} \).

Rules:

\[0 \leq P(A) \leq 1 \]

\[P(\text{not } A) = 1 - P(A) \]

Addition Rule

\[P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \]

\[\uparrow \]

or both.

\[= 0 \text{ if } A \text{ and } B \text{ are mutually exclusive} \]

\[P(\text{Ambidextrous or Hypoactive}) = P(\text{amb.}) + P(\text{hyp.}) - P(\text{amb and hyp}) \]
Multiplication Rule.

\[P(A \text{ and } B) = P(A | B) \cdot P(B) \]

- conditional probability - "prob. of A given B"

\[= P(A) \times P(B) \quad \text{if} \quad A + B \text{ are independent.} \]

\[P(\text{amb and hyperactive}) \]

\[= P(\text{amb | hyperactive}) \cdot P(\text{hyperactive}) \]

amb and hyperactive are NOT independent.

- title of the article.

if I know you are ambivalent, that changes the probability of you being hyperactive (it increases the prob. of hyperactive).
\[P(\text{ambidextrous}) = \frac{1}{100} \]

\[P(\text{language difficulty} \mid \text{ambidextrous}) \]

\[= 2 \cdot P(\text{language difficulty} \mid \text{not ambidextrous}) \]

If I choose a random 7 year old who has a language difficulty, what's the chance they are ambidextrous?

\[P(\text{amb.} \mid \text{language difficulty}) \]

\[P(A \text{ and } B) = P(A \mid B) P(B) \]

\[= P(B \mid A) P(A) \]

\[P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)} \quad \text{Bayes thm.} \]

\[P(\text{amb.} \mid \text{language difficulty}) = \frac{P(\text{lang. diff.} \mid \text{amb}) P(\text{amb})}{P(\text{lang. diff.})}. \]

\[P(B) = P(B \mid A) P(A) + P(B \mid \bar{A}) P(\bar{A}). \]

\[= P(B \text{ and } A) + P(B \text{ and } \bar{A}) \]
\[P(\text{amb} | \text{lang diff.}) = \frac{P(\text{lang diff.} | \text{amb}) \cdot \varphi(\text{amb})}{P(\text{lang diff.} | \text{amb}) \cdot P(\text{amb}) + P(\text{lang diff.} \not\text{amb}) \cdot P(\not\text{amb})} \]

\[= \frac{2 \cdot P(LA) \cdot \frac{1}{100}}{2 \cdot P(LA) \cdot \frac{1}{100} + P(LA) \cdot \frac{99}{100}} = \frac{2}{101} = \frac{1}{50} \]

A kid with a language difficulty has a chance of \(\approx 2\% \) to also be ambidextrous, because being ambidextrous is actually quite rare.
1000 kids.

70% of non ambidextrous kids have language difficulty.

\[\Rightarrow \frac{40}{100} \] of amb kids have language difficulty.

\[
P(\text{amb} | \text{language difficulty}) = \frac{4}{198 + 4} = \frac{4}{202} = \frac{1}{50}.
\]
Random variable

Prob. distribution

Binomial distribution

\[n \text{ trials} \]
\[k \text{ successes} \]
\[p \text{ prob of success on a given trial} \]

\[p(k \text{ out of } n) = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k} . \]

Expected values.

\[\mu = E[x] = \sum x \cdot p(x) \]
\[\sigma^2 = \text{Var}[x] = \sum (x - \mu)^2 \cdot p(x) \]

Binomial

\[\mu = np \]
\[\sigma = \sqrt{np(1-p)} \]

Poisson

\[p(x) = \frac{\mu^x e^{-\mu}}{x!} , \text{ for } x > 0 \]

\[\mu - \text{mean rate} \]
\[\sigma = \sqrt{\mu} \]
Normal Distribution.

\[p \left(\frac{z}{\sigma} < z \right) = \text{area to the left of } z \text{ under the normal curve} \]

Approximate Binomial / discrete distribution by the normal distribution - continuity correction

\[p(x \leq 5) = p(x \leq 5.5 \text{ when using the normal approximation}) \]

so that include the bar that represents \(p(x = 5) \)

CLT

Sample mean \(\bar{x} \) is normally distributed

\[\mu_{\bar{x}} = \mu, \quad \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \]

\(\bar{x} \) is a good approximation if population is normally distributed and \(n \) is "large" greater than 30.
Measures of variability:

- Range
- Interquartile range
- Standard deviation

\[\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{n}} \quad \text{— population} \]

\[s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} \quad \text{— sample} \]