Homework 5

Problems for Section 2.2 and 2.3

Problem 1 (10 points). Find the inverse of the following matrices, if they exist.

\[
A = \begin{bmatrix}
-2 & 3 \\
-3 & -1
\end{bmatrix} \quad B = \begin{bmatrix}
1 & 1 & 4 \\
-1 & 1 & 2 \\
2 & 0 & 4
\end{bmatrix} \quad C = \begin{bmatrix}
-5 & 1 & -4 \\
0 & 1 & 1 \\
2 & 0 & 2
\end{bmatrix}
\]

Problem 2 (10 points). Find the value(s) of \(k \) for which the matrix \(\begin{bmatrix} k^2 & 2k \\ 8 & k \end{bmatrix} \) is not invertible.

Problem 3 (10 points). If \(A, B, \) and \(C \) are \(n \times n \) invertible matrices, does the equation

\(C^{-1}(A + X)B^{-1} = I_n \)

have a solution for \(X \)? If so, find it.

Problem 4 (10 points). Let \(D \) be a \(n \times n \) diagonal matrix, i.e.,

\[
D = \begin{bmatrix}
d_{11} & 0 & \cdots & 0 & 0 \\
0 & d_{22} & \cdots & 0 & 0 \\
0 & 0 & \cdots & d_{n-1,n-1} & 0 \\
0 & 0 & \cdots & 0 & d_{nn}
\end{bmatrix}
\]

with \(d_{ii} \neq 0 \), for all \(i = 1, 2, \cdots, n \). Find the inverse of \(D \).

Problem 5 (10 points). Let

\[
A = \begin{bmatrix}
2 & 1 & 0 \\
-2 & -1 & 2 \\
4 & 1 & 0
\end{bmatrix}
\]

Find the second column of \(A^{-1} \) without computing the other columns.

Problem 6 (10 points). Let \(A \) be a \(n \times n \) invertible matrix. Prove that the columns \(A^T \) are linearly independent.

Problem 7 (10 points). Let \(A \) and \(B \) be \(n \times n \) matrices such that \(AB \) is invertible. Prove that both \(A \) and \(B \) are invertible.

Problem 8 (10 points). Let \(A \) be a \(n \times n \) matrix whose columns are linearly independent. Prove that the columns of \(A^2 \) are linearly independent.

Problem 9 (10 points). A square matrix \(A \) is called symmetric if \(A^T = A \). Prove that if a symmetric matrix is invertible, then its inverse is also symmetric.
Problem 10 (10 points). If A, B and $A + B$ are all $n \times n$ invertible matrices. Prove that $A^{-1} + B^{-1}$ is invertible and the inverse is $A(A + B)^{-1}B$.

Problem 11 (50 points). Mark each statement True or False

11.1. If A and B are invertible, then $A + B$ is invertible.

11.2. If A is $n \times n$ and not invertible, then the linear system $Ax = b$ is inconsistent.

11.3. If $(A - I)$ is invertible, then the linear system $Ax = x$ has a nonzero solution for x.

11.4. If a square matrix has nonzero entries on the diagonal, then A is invertible.

11.5. If column of A are linearly independent, then the columns of A span \mathbb{R}^n.

11.6. Let A be a square matrix. If the equation $Ax = 0$ has a nontrivial solution, then A is not invertible.

11.7. A square matrix with two identical rows cannot be invertible.

11.8. A square matrix with two identical columns cannot be invertible.

11.9. A product of invertible matrices is invertible.

11.10. If A and B are $n \times n$ invertible matrices, then $A^{-1}B^{-1}$ is the inverse of AB.