Orthogonality and Least Squares

6.1 INNER PRODUCT, LENGTH, AND ORTHOGONALITY
INNER PRODUCT

- If \(\mathbf{u} \) and \(\mathbf{v} \) are vectors in \(\mathbb{R}^n \), then we regard \(\mathbf{u} \) and \(\mathbf{v} \) as \(n \times 1 \) matrices.

- The transpose \(\mathbf{u}^T \) is a \(1 \times n \) matrix, and the matrix product \(\mathbf{u}^T \mathbf{v} \) is a \(1 \times 1 \) matrix, which we write as a single real number (a scalar) without brackets.

- The number \(\mathbf{u}^T \mathbf{v} \) is called the **inner product** of \(\mathbf{u} \) and \(\mathbf{v} \), and it is written as \(\mathbf{u} \cdot \mathbf{v} \).

- The inner product is also referred to as a **dot product**.
If \(u \) and \(v \) are vectors,

\[
\begin{bmatrix}
 u_1 \\
 u_2 \\
 \vdots \\
 u_n \\
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
 v_1 \\
 v_2 \\
 \vdots \\
 v_n \\
\end{bmatrix},
\]

then the inner product of \(u \) and \(v \) is

\[
\begin{bmatrix}
 u_1 & u_2 & \cdots & u_n \\
\end{bmatrix}
\begin{bmatrix}
 v_1 \\
 v_2 \\
 \vdots \\
 v_n \\
\end{bmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n.
\]
Theorem 1: Let u, v, and w be vectors in \mathbb{R}^n, and let c be a scalar. Then

a. $u \cdot v = v \cdot u$

b. $(u + v) \cdot w = u \cdot w + v \cdot w$

c. $(cu) \cdot v = c(u \cdot v) = u \cdot (cv)$

d. $u \cdot u \geq 0$, and $u \cdot u = 0$ if and only if $u = 0$

Properties (b) and (c) can be combined several times to produce the following useful rule:

$$(c_1u_1 + \cdots + c_p u_p) \cdot w = c_1(u_1 \cdot w) + \cdots + c_p(u_p \cdot w)$$
THE LENGTH OF A VECTOR

- If \(\mathbf{v} \) is in \(\mathbb{R}^n \), with entries \(v_1, \ldots, v_n \), then the square root of \(\mathbf{v} \cdot \mathbf{v} \) is defined because \(\mathbf{v} \cdot \mathbf{v} \) is nonnegative.

- **Definition:** The length (or norm) of \(\mathbf{v} \) is the nonnegative scalar \(\| \mathbf{v} \| \) defined by

 \[
 \| \mathbf{v} \| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2}
 \text{ and } \| \mathbf{v} \|^2 = \mathbf{v} \cdot \mathbf{v}
 \]

- Suppose \(\mathbf{v} \) is in \(\mathbb{R}^2 \), say, \(\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix} \).
THE LENGTH OF A VECTOR

- If we identify \mathbf{v} with a geometric point in the plane, as usual, then $\|\mathbf{v}\|$ coincides with the standard notion of the length of the line segment from the origin to \mathbf{v}.
- This follows from the Pythagorean Theorem applied to a triangle such as the one shown in the following figure.

For any scalar c, the length $c\mathbf{v}$ is $|c|$ times the length of \mathbf{v}. That is,

$$\|c\mathbf{v}\| = |c||\mathbf{v}|$$
A vector whose length is 1 is called a **unit vector**.

If we *divide* a nonzero vector \(\mathbf{v}\) by its length—that is, multiply by \(1 / \|\mathbf{v}\|\)—we obtain a unit vector \(\mathbf{u}\) because the length of \(\mathbf{u}\) is \((1 / \|\mathbf{v}\|)\|\mathbf{v}\|\).

The process of creating \(\mathbf{u}\) from \(\mathbf{v}\) is sometimes called **normalizing** \(\mathbf{v}\), and we say that \(\mathbf{u}\) is *in the same direction* as \(\mathbf{v}\).
Example 1: Let \(v = (1, -2, 2, 0) \). Find a unit vector \(u \) in the same direction as \(v \).

Solution: First, compute the length of \(v \):

\[
\|v\|^2 = v \cdot v = (1)^2 + (-2)^2 + (2)^2 + (0)^2 = 9
\]

\[
\|v\| = \sqrt{9} = 3
\]

Then, multiply \(v \) by \(1 / \|v\| \) to obtain

\[
u = \frac{1}{\|v\|} v = \frac{1}{3} v = \frac{1}{3} \begin{bmatrix} 1 \\ -2 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \\ 0 \end{bmatrix}
\]
DISTANCE IN \mathbb{R}^n

- To check that $\|u\| = 1$, it suffices to show that $\|u\|^2 = 1$.

\[
\|u\|^2 = ugu = \left(\frac{1}{3} \right)^2 + \left(-\frac{2}{3} \right)^2 + \left(\frac{2}{3} \right)^2 + (0)^2
\]

\[
= \frac{1}{9} + \frac{4}{9} + \frac{4}{9} + 0 = 1
\]

- **Definition:** For u and v in \mathbb{R}^n, the distance between u and v, written as $\text{dist} \ (u, v)$, is the length of the vector $u - v$. That is,

\[
\text{dist} \ (u,v) = \|u - v\|
\]
Example 2: Compute the distance between the vectors $u = (7,1)$ and $v = (3,2)$.

Solution: Calculate

$$u - v = \begin{bmatrix} 7 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$

$$\|u - v\| = \sqrt{4^2 + (-1)^2} = \sqrt{17}$$

The vectors u, v, and $u - v$ are shown in the figure on the next slide.

When the vector $u - v$ is added to v, the result is u.
The distance between \(\mathbf{u} \) and \(\mathbf{v} \) is the length of \(\mathbf{u} - \mathbf{v} \).

- Notice that the parallelogram in the above figure shows that the distance from \(\mathbf{u} \) to \(\mathbf{v} \) is the same as the distance from \(\mathbf{u} - \mathbf{v} \) to \(\mathbf{0} \).
ORTHOGONAL VECTORS

- Consider \mathbb{R}^2 or \mathbb{R}^3 and two lines through the origin determined by vectors \mathbf{u} and \mathbf{v}.

- See the figure below. The two lines shown in the figure are geometrically perpendicular if and only if the distance from \mathbf{u} to \mathbf{v} is the same as the distance from \mathbf{u} to $-\mathbf{v}$.

- This is the same as requiring the squares of the distances to be the same.
ORTHOGONAL VECTORS

- Now

\[
\left[\text{dist}(u, -v) \right]^2 = \|u - (-v)\|^2 = \|u + v\|^2
\]

\[
= (u + v) \cdot (u + v)
\]

\[
= u \cdot (u + v) + v \cdot (u + v) \quad \text{Theorem 1(b)}
\]

\[
= u \cdot u + u \cdot v + v \cdot u + v \cdot v \quad \text{Theorem 1(a), (b)}
\]

\[
= \|u\|^2 + \|v\|^2 + 2u \cdot v \quad \text{Theorem 1(a)}
\]

- The same calculations with \(v\) and \(-v\) interchanged show that

\[
\left[\text{dist}(u,v) \right]^2 = \|u\|^2 + \|-v\|^2 + 2u \cdot (-v)
\]

\[
= \|u\|^2 + \|v\|^2 - 2u \cdot v
\]
The two squared distances are equal if and only if $2u \cdot v = -2u \cdot v$, which happens if and only if $u \cdot v = 0$.

This calculation shows that when vectors u and v are identified with geometric points, the corresponding lines through the points and the origin are perpendicular if and only if $u \cdot v = 0$.

Definition: Two vectors u and v in \mathbb{R}^n are orthogonal (to each other) if $u \cdot v = 0$.

The zero vector is orthogonal to every vector in \mathbb{R}^n because $0^T v = 0$ for all v.

© 2012 Pearson Education, Inc.
The Pythagorean Theorem

- Theorem 2: Two vectors \(\mathbf{u} \) and \(\mathbf{v} \) are orthogonal if and only if
 \[
 \| \mathbf{u} + \mathbf{v} \|^2 = \| \mathbf{u} \|^2 + \| \mathbf{v} \|^2.
 \]

- Orthogonal Complements
 - If a vector \(\mathbf{z} \) is orthogonal to every vector in a subspace \(W \) of \(\mathbb{R}^n \), then \(\mathbf{z} \) is said to be orthogonal to \(W \).
 - The set of all vectors \(\mathbf{z} \) that are orthogonal to \(W \) is called the orthogonal complement of \(W \) and is denoted by \(W^\perp \) (and read as “\(W \) perpendicular” or simply “\(W \) perp”).
ORTHOGONAL COMPLEMENTS

1. A vector \mathbf{x} is in W^\perp if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

2. W^\perp is a subspace of \mathbb{R}^n.

Theorem 3: Let A be an $m \times n$ matrix. The orthogonal complement of the column space of A is the null space of A^T

$$(\text{Col } A)^\perp = \text{Nul } A^T$$
Orthogonality and Least Squares

6.2 ORTHOGONAL SETS
ORTHOGONAL SETS

- A set of vectors \(\{u_1, \ldots, u_p\} \) in \(\mathbb{R}^n \) is said to be an **orthogonal set** if each pair of distinct vectors from the set is orthogonal, that is, if \(u_i \cdot u_j = 0 \) whenever \(i \neq j \).

- **Theorem 4:** If \(S = \{u_1, \ldots, u_p\} \) is an orthogonal set of nonzero vectors in \(\mathbb{R}^n \), then \(S \) is linearly independent and hence is a basis for the subspace spanned by \(S \).
ORTHOGONAL SETS

- **Proof:** If \(0 = c_1 u_1 + \cdots + c_p u_p \) for some scalars \(c_1, \ldots, c_p \), then

\[
0 = 0 \cdot u_1 = (c_1 u_1 + c_2 u_2 + \cdots + c_p u_p) \cdot u_1
\]

\[
= (c_1 u_1) \cdot u_1 + (c_2 u_2) \cdot u_1 + \cdots + (c_p u_p) \cdot u_1
\]

\[
= c_1 (u_1 \cdot u_1) + c_2 (u_2 \cdot u_1) + \cdots + c_p (u_p \cdot u_1)
\]

\[
= c_1 (u_1 \cdot u_1)
\]

because \(u_1 \) is orthogonal to \(u_2, \ldots, u_p \).

- Since \(u_1 \) is nonzero, \(u_1 \cdot u_1 \) is not zero and so \(c_1 = 0 \).

- Similarly, \(c_2, \ldots, c_p \) must be zero.
Thus S is linearly independent.

Definition: An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

Theorem 5: Let $\{u_1, \ldots, u_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n. For each y in W, the weights in the linear combination

$$y = c_1 u_1 + \cdots + c_p u_p$$

are given by

$$c_j = \frac{y \cdot u_j}{u_j \cdot u_j} \quad (j = 1, K, p)$$
Proof: The orthogonality of \(\{\mathbf{u}_1, \ldots, \mathbf{u}_p\} \) shows that

\[
y \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1 = c_1 (\mathbf{u}_1 \cdot \mathbf{u}_1)
\]

Since \(\mathbf{u}_1 \cdot \mathbf{u}_1 \) is not zero, the equation above can be solved for \(c_1 \).

To find \(c_j \) for \(j = 2, \ldots, p \), compute \(y \cdot \mathbf{u}_j \) and solve for \(c_j \).
Given a nonzero vector \mathbf{u} in \mathbb{R}^n, consider the problem of decomposing a vector \mathbf{y} in \mathbb{R}^n into the sum of two vectors, one a multiple of \mathbf{u} and the other orthogonal to \mathbf{u}.

We wish to write

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z} \quad ----(1)$$

where $\hat{\mathbf{y}} = \alpha \mathbf{u}$ for some scalar α and \mathbf{z} is some vector orthogonal to \mathbf{u}. See the following figure.
AN ORTHOGONAL PROJECTION

- Given any scalar α, let $z = y - \alpha u$, so that (1) is satisfied.

- Then $y - \hat{y}$ is orthogonal to u if and only if

$$0 = (y - \alpha u) \cdot u = y \cdot u - (\alpha u) \cdot u = y \cdot u - \alpha (u \cdot u)$$

- That is, (1) is satisfied with z orthogonal to u if and only if

$$\alpha = \frac{y \cdot u}{u \cdot u} \quad \text{and} \quad \hat{y} = \frac{y \cdot u}{u \cdot u} u.$$

- The vector \hat{y} is called the orthogonal projection of y onto u, and the vector z is called the component of y orthogonal to u.
AN ORTHOGONAL PROJECTION

- If c is any nonzero scalar and if u is replaced by cu in the definition of \hat{y}, then the orthogonal projection of y onto cu is exactly the same as the orthogonal projection of y onto u.

- Hence this projection is determined by the subspace L spanned by u (the line through u and 0).

- Sometimes \hat{y} is denoted by $\text{proj}_L y$ and is called the orthogonal projection of y onto L.

- That is,

$$\hat{y} = \text{proj}_L y = \frac{y \cdot u}{u \cdot u} \quad ----(2)$$
Example 1: Let \(\mathbf{y} = \begin{bmatrix} 7 \\ 6 \end{bmatrix} \) and \(\mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \). Find the orthogonal projection of \(\mathbf{y} \) onto \(\mathbf{u} \). Then write \(\mathbf{y} \) as the sum of two orthogonal vectors, one in \(\text{Span} \{ \mathbf{u} \} \) and one orthogonal to \(\mathbf{u} \).

Solution: Compute

\[
\mathbf{y} \cdot \mathbf{u} = \begin{bmatrix} 7 \\ 6 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 40
\]

\[
\mathbf{u} \cdot \mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 20
\]
AN ORTHOGONAL PROJECTION

- The orthogonal projection of y onto u is

\[
\hat{y} = \frac{y \cdot u}{u \cdot u} u = \frac{40}{20} u = 2 \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}
\]

and the component of y orthogonal to u is

\[
y - \hat{y} = \begin{bmatrix} 7 \\ 6 \end{bmatrix} - \begin{bmatrix} 8 \\ 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}
\]

- The sum of these two vectors is y.
AN ORTHOGONAL PROJECTION

That is,

\[
\begin{bmatrix}
7 \\
6
\end{bmatrix}
= \begin{bmatrix}
8 \\
4
\end{bmatrix} + \begin{bmatrix}
-1 \\
2
\end{bmatrix}
\]

The decomposition of \(y \) is illustrated in the following figure.

The orthogonal projection of \(y \) onto a line \(L \) through the origin.
AN ORTHOGONAL PROJECTION

- **Note:** If the calculations above are correct, then \(\{\hat{y}, y - \hat{y}\} \) will be an orthogonal set.

- As a check, compute
 \[
 \hat{y} \cdot (y - \hat{y}) = \begin{bmatrix} 8 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 2 \end{bmatrix} = -8 + 8 = 0
 \]

- Since the line segment in the figure on the previous slide between \(y \) and \(\hat{y} \) is perpendicular to \(L \), by construction of \(\hat{y} \), the point identified with \(\hat{y} \) is the closest point of \(L \) to \(y \).
ORTHONORMAL SETS

- A set \{u_1, \ldots, u_p\} is an **orthonormal set** if it is an orthogonal set of unit vectors.

- If \(W\) is the subspace spanned by such a set, then \{u_1, \ldots, u_p\} is an **orthonormal basis** for \(W\), since the set is automatically linearly independent, by Theorem 4.

- The simplest example of an orthonormal set is the standard basis \{e_1, \ldots, e_n\} for \(\mathbb{R}^n\).

- Any nonempty subset of \{e_1, \ldots, e_n\} is orthonormal, too.
ORTHONORMAL SETS

- **Example 2:** Show that $\{v_1, v_2, v_3\}$ is an orthonormal basis of \mathbb{R}^3, where

$$v_1 = \begin{bmatrix} 3/\sqrt{11} \\ 1/\sqrt{11} \\ 1/\sqrt{11} \end{bmatrix}, \quad v_2 = \begin{bmatrix} -1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}, \quad v_3 = \begin{bmatrix} -1/\sqrt{66} \\ -4/\sqrt{66} \\ 7/\sqrt{66} \end{bmatrix}$$

- **Solution:** Compute

$$v_1 \cdot v_2 = -3/\sqrt{66} + 2/\sqrt{66} + 1/\sqrt{66} = 0$$

$$v_1 \cdot v_3 = -3/\sqrt{726} - 4/\sqrt{726} + 7/\sqrt{726} = 0$$
ORTHONORMAL SETS

\[\mathbf{v}_2 \cdot \mathbf{v}_3 = \frac{1}{\sqrt{396}} - \frac{8}{\sqrt{396}} + \frac{7}{\sqrt{396}} = 0 \]

- Thus \(\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \} \) is an orthogonal set.
- Also, \(\mathbf{v}_1 \cdot \mathbf{v}_1 = \frac{9}{11} + \frac{1}{11} + \frac{1}{11} = 0 \)
 \[\mathbf{v}_2 \cdot \mathbf{v}_2 = \frac{1}{6} + \frac{4}{6} + \frac{1}{6} = 1 \]
 \[\mathbf{v}_3 \cdot \mathbf{v}_3 = \frac{1}{66} + \frac{16}{66} + \frac{49}{66} = 1 \]
 which shows that \(\mathbf{v}_1, \mathbf{v}_2, \) and \(\mathbf{v}_3 \) are unit vectors.
- Thus \(\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \} \) is an orthonormal set.
- Since the set is linearly independent, its three vectors form a basis for \(\mathbb{R}^3 \). See the figure on the next slide.
When the vectors in an orthogonal set of nonzero vectors are *normalized* to have unit length, the new vectors will still be orthogonal, and hence the new set will be an orthonormal set.
Orthogonality and Least Squares

6.3 ORTHOGONAL PROJECTIONS
ORTHOGONAL PROJECTIONS

- The orthogonal projection of a point in \mathbb{R}^2 onto a line through the origin has an important analogue in \mathbb{R}^n.

- Given a vector y and a subspace W in \mathbb{R}^n, there is a vector \hat{y} in W such that (1) \hat{y} is the unique vector in W for which $y - \hat{y}$ is orthogonal to W, and (2) \hat{y} is the unique vector in W closest to y. See the following figure.
These two properties of \hat{y} provide the key to finding the least-squares solutions of linear systems.

Theorem 8: Let W be a subspace of \mathbb{R}^n. Then each y in \mathbb{R}^n can be written uniquely in the form

$$ y = \hat{y} + z $$

where \hat{y} is in W and z is in W^\perp.

In fact, if $\{u_1, \ldots, u_p\}$ is any orthogonal basis of W, then

$$ \hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \cdots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p $$

and $z = y - \hat{y}$.
The vector \(\hat{y} \) in (1) is called the orthogonal projection of \(y \) onto \(W \) and often is written as \(\text{proj}_W y \). See the following figure.

Proof: Let \(\{u_1, \ldots, u_p\} \) be any orthogonal basis for \(W \), and define \(\hat{y} \) by (2).

Then \(\hat{y} \) is in \(W \) because \(\hat{y} \) is a linear combination of the basis \(u_1, \ldots, u_p \).
THE ORTHOGONAL DECOMPOSITION THEOREM

- Let $z = y - \hat{y}$.
- Since u_1 is orthogonal to u_2, \ldots, u_p, it follows from (2) that

 $z \cdot u_1 = (y - \hat{y}) \cdot u_1 = y \cdot u_1 - \left(\frac{y \cdot u_1}{u_1 \cdot u_1} \right) u_1 \cdot u_1 = 0 - \cdots - 0$

 $= y \cdot u_1 - y \cdot u_1 = 0$

- Thus z is orthogonal to u_1.
- Similarly, z is orthogonal to each u_j in the basis for W.
- Hence z is orthogonal to every vector in W.
- That is, z is in W^\perp.
THE ORTHOGONAL DECOMPOSITION THEOREM

- To show that the decomposition in (1) is unique, suppose \(y \) can also be written as \(y = \hat{y}_1 + z_1 \), with \(\hat{y}_1 \) in \(W \) and \(z_1 \) in \(W^\perp \).
- Then \(\hat{y} + z = \hat{y}_1 + z_1 \) (since both sides equal \(y \)), and so
 \[
 \hat{y} - \hat{y}_1 = z_1 - z
 \]
- This equality shows that the vector \(v = \hat{y} - \hat{y}_1 \) is in \(W \) and in \(W^\perp \) (because \(z_1 \) and \(z \) are both in \(W^\perp \), and \(W^\perp \) is a subspace).
- Hence \(v \cdot v = 0 \), which shows that \(v = 0 \).
- This proves that \(\hat{y} = \hat{y}_1 \) and also \(z_1 = z \).
The uniqueness of the decomposition (1) shows that the orthogonal projection \hat{y} depends only on W and not on the particular basis used in (2).

Example 1: Let $\mathbf{u}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix},$ and $\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$

Observe that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal basis for $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}.$ Write \mathbf{y} as the sum of a vector in W and a vector orthogonal to $W.$
THE ORTHOGONAL DECOMPOSITION THEOREM

- **Solution:** The orthogonal projection of y onto W is

$$\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{y \cdot u_2}{u_2 \cdot u_2} u_2$$

$$= \frac{9}{30} \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix} + \frac{3}{6} \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} = \frac{9}{30} \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix} + \frac{15}{30} \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix}$$

- Also

$$y - \hat{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix} = \begin{bmatrix} 7/5 \\ 0 \\ 14/5 \end{bmatrix}$$
Theorem 8 ensures that \(y - \hat{y} \) is in \(W^\perp \).

To check the calculations, verify that \(y - \hat{y} \) is orthogonal to both \(u_1 \) and \(u_2 \) and hence to all of \(W \).

The desired decomposition of \(y \) is

\[
y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix} + \begin{bmatrix} 7/5 \\ 0 \\ 14/5 \end{bmatrix}
\]
If \(\{u_1, \ldots, u_p\} \) is an orthogonal basis for \(W \) and if \(y \) happens to be in \(W \), then the formula for \(\text{proj}_W y \) is exactly the same as the representation of \(y \) given in Theorem 5 in Section 6.2.

In this case, \(\text{proj}_W y = y \).

If \(y \) is in \(W = \text{Span}\{u_1, \ldots, u_p\} \), then \(\text{proj}_W y = y \).
Theorem 9: Let W be a subspace of \mathbb{R}^n, let y be any vector in \mathbb{R}^n, and let \hat{y} be the orthogonal projection of y onto W. Then \hat{y} is the closest point in W to y, in the sense that

$$\|y - \hat{y}\| < \|y - v\|$$

for all v in W distinct from \hat{y}.

The vector \hat{y} in Theorem 9 is called the best approximation to y by elements of W.

The distance from y to v, given by $\|y - v\|$, can be regarded as the “error” of using v in place of y.

Theorem 9 says that this error is minimized when $v = \hat{y}$.
Inequality (3) leads to a new proof that \hat{y} does not depend on the particular orthogonal basis used to compute it.

If a different orthogonal basis for W were used to construct an orthogonal projection of y, then this projection would also be the closest point in W to y, namely, \hat{y}.
THE BEST APPROXIMATION THEOREM

- **Proof:** Take \(v \) in \(W \) distinct from \(\hat{y} \). See the following figure.

![Diagram](image)

The orthogonal projection of \(y \) onto \(W \) is the closest point in \(W \) to \(y \).

- Then \(\hat{y} - v \) is in \(W \).
- By the Orthogonal Decomposition Theorem, \(y - \hat{y} \) is orthogonal to \(W \).
- In particular, \(y - \hat{y} \) is orthogonal to \(\hat{y} - v \) (which is in \(W \)).
Since

\[y - v = (y - \hat{y}) + (\hat{y} - v) \]

the Pythagorean Theorem gives

\[\|y - v\|^2 = \|y - \hat{y}\|^2 + \|\hat{y} - v\|^2 \]

(See the colored right triangle in the figure on the previous slide. The length of each side is labeled.)

Now \(\|\hat{y} - v\|^2 > 0\) because \(\hat{y} - v \neq 0\), and so inequality (3) follows immediately.
Example 2: The distance from a point y in \mathbb{R}^n to a subspace W is defined as the distance from y to the nearest point in W. Find the distance from y to $W = \text{Span}\{u_1, u_2\}$, where

$$y = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix}, \quad u_1 = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

Solution: By the Best Approximation Theorem, the distance from y to W is $\|y - \hat{y}\|$, where $\hat{y} = \text{proj}_W y$.
PROPERTIES OF ORTHOGONAL PROJECTIONS

- Since \(\{\mathbf{u}_1, \mathbf{u}_2\} \) is an orthogonal basis for \(W \),
 \[
 \hat{y} = \frac{15}{30} \mathbf{u}_1 + \frac{-21}{6} \mathbf{u}_2 = \frac{1}{2} \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} - \frac{7}{2} \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ -8 \end{bmatrix}
 \]

- \(y - \hat{y} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix} - \begin{bmatrix} -1 \\ -8 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 6 \end{bmatrix} \)

- \(\|y - \hat{y}\|^2 = 3^2 + 6^2 = 45 \)

- The distance from \(y \) to \(W \) is \(\sqrt{45} = 3\sqrt{5} \).
Orthogonality and Least Squares

6.5

LEAST-SQUARES PROBLEMS
Definition: If A is $m \times n$ and b is in \mathbb{R}^m, a least-squares solution of $Ax = b$ is an \hat{x} in \mathbb{R}^n such that

$$
\|b - A\hat{x}\| \leq \|b - Ax\|
$$

for all x in \mathbb{R}^n.

The most important aspect of the least-squares problem is that no matter what x we select, the vector Ax will necessarily be in the column space, $\text{Col } A$.

So we seek an x that makes Ax the closest point in $\text{Col } A$ to b. See the figure on the next slide.
Solution of the General Least-Squares Problem

Given A and b, apply the Best Approximation Theorem to the subspace $\text{Col } A$.

Let

$$\hat{b} = \text{proj}_{\text{Col } A} b$$
Because \hat{b} is in the column space A, the equation $Ax = \hat{b}$ is consistent, and there is an \hat{x} in \mathbb{R}^n such that

$$A\hat{x} = \hat{b} \quad \text{----(1)}$$

Since \hat{b} is the closest point in $\text{Col } A$ to b, a vector \hat{x} is a least-squares solution of $Ax = b$ if and only if \hat{x} satisfies (1).

Such an \hat{x} in \mathbb{R}^n is a list of weights that will build \hat{b} out of the columns of A. See the figure on the next slide.
SOLUTION OF THE GENERAL LEAST-SQUARES PROBLEM

- Suppose \(\hat{x} \) satisfies \(A \hat{x} = \hat{b} \).
- By the Orthogonal Decomposition Theorem, the projection \(\hat{b} \) has the property that \(b - \hat{b} \) is orthogonal to \(\text{Col} \ A \), so \(b - A \hat{x} \) is orthogonal to each column of \(A \).
- If \(a_j \) is any column of \(A \), then \(a_j \cdot (b - A \hat{x}) = 0 \), and \(a_j^T (b - A \hat{x}) \).
Since each a_j^T is a row of A^T,
\[A^T (b - A\hat{x}) = 0 \] ------(2)

Thus
\[A^T b - A^T A\hat{x} = 0 \]
\[A^T A\hat{x} = A^T b \]

These calculations show that each least-squares solution of $Ax = b$ satisfies the equation
\[A^T A x = A^T b \] ------(3)

The matrix equation (3) represents a system of equations called the **normal equations** for $Ax = b$.
A solution of (3) is often denoted by \hat{x}.
Theorem 13: The set of least-squares solutions of $Ax = b$ coincides with the nonempty set of solutions of the normal equation $A^T Ax = A^T b$.

Proof: The set of least-squares solutions is nonempty and each least-squares solution \hat{x} satisfies the normal equations.

Conversely, suppose \hat{x} satisfies $A^T A\hat{x} = A^T b$.

Then \hat{x} satisfies (2), which shows that $b - A\hat{x}$ is orthogonal to the rows of A^T and hence is orthogonal to the columns of A.

Since the columns of A span $\text{Col } A$, the vector $b - A\hat{x}$ is orthogonal to all of $\text{Col } A$.
Hence the equation
\[b = A\hat{x} + (b - A\hat{x}) \]
is a decomposition of \(b \) into the sum of a vector in \(\text{Col} \ A \) and a vector orthogonal to \(\text{Col} \ A \).

By the uniqueness of the orthogonal decomposition, \(A\hat{x} \) must be the orthogonal projection of \(b \) onto \(\text{Col} \ A \).

That is, \(A\hat{x} = \hat{b} \) and \(\hat{x} \) is a least-squares solution.
Example 1: Find a least-squares solution of the inconsistent system $Ax = b$ for

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$$

Solution: To use normal equations (3), compute:

$$A^T A = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix}$$
Then the equation $A^T A x = A^T b$ becomes

$$
\begin{bmatrix}
17 & 1 \\
1 & 5
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
19 \\
11
\end{bmatrix}
$$
Row operations can be used to solve the system on the previous slide, but since $A^T A$ is invertible and 2×2, it is probably faster to compute

$$(A^T A)^{-1} = \frac{1}{84} \begin{bmatrix} 5 & -1 \\ -1 & 17 \end{bmatrix}$$

and then solve $A^T A \hat{x} = A^T b$ as

$$\hat{x} = (A^T A)^{-1} A^T b$$

$$= \frac{1}{84} \begin{bmatrix} 5 & -1 \\ -1 & 17 \end{bmatrix} \begin{bmatrix} 19 \\ 11 \end{bmatrix} = \frac{1}{84} \begin{bmatrix} 84 \\ 168 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
Theorem 14: Let A be an $m \times n$ matrix. The following statements are logically equivalent:

a. The equation $Ax = b$ has a unique least-squares solution for each b in \mathbb{R}^m.

b. The columns of A are linearly independent.

c. The matrix A^TA is invertible.

When these statements are true, the least-squares solution \hat{x} is given by

$$\hat{x} = (A^T A)^{-1} A^T b$$

When a least-squares solution \hat{x} is used to produce $A\hat{x}$ as an approximation to b, the distance from b to $A\hat{x}$ is called the least-squares error of this approximation.
Example 2: Find a least-squares solution of $Ax = b$ for

$$
A = \begin{bmatrix}
1 & -6 \\
1 & -2 \\
1 & 1 \\
1 & 7
\end{bmatrix},
\quad
b = \begin{bmatrix}
-1 \\
2 \\
1 \\
6
\end{bmatrix}
$$

Solution: Because the columns a_1 and a_2 of A are orthogonal, the orthogonal projection of b onto $\text{Col } A$ is given by

$$
\hat{b} = \frac{b \cdot a_1}{a_1 \cdot a_1} a_1 + \frac{b \cdot a_2}{a_2 \cdot a_2} a_2
= \frac{8}{4} a_1 + \frac{45}{90} a_2
= \frac{8}{4} a_1 + \frac{1}{2} a_2
$$

----(5)
ALTERNATIVE CALCULATIONS OF LEAST-SQUARES SOLUTIONS

\[\hat{\mathbf{b}} = \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} + \begin{bmatrix} -3 \\ -1 \\ 1/2 \\ 7/2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 5/2 \\ 11/2 \end{bmatrix} \]

- Now that \(\hat{\mathbf{b}} \) is known, we can solve \(A\hat{\mathbf{x}} = \hat{\mathbf{b}} \).
- But this is trivial, since we already know weights to place on the columns of \(A \) to produce \(\hat{\mathbf{b}} \).
- It is clear from (5) that

\[
\hat{\mathbf{x}} = \begin{bmatrix} 8/4 \\ 45/90 \end{bmatrix} = \begin{bmatrix} 2 \\ 1/2 \end{bmatrix}
\]