The more complicated the math, the dumber you sound explaining it.

Gilbert: Theorem? Yeah, that's how if you draw a loop around something, you can tell how much swirl is in it.

http://www.smbc-comics.com/?id=3278
Announcements

• Remember, this week's homework is due by **Wednesday**, 11/26 @ 5pm
• No sections this week
iClicker question #1

If a diagonalizable matrix A has eigenvalues +/- 1 only, then what are the possible eigenvalues of the matrix A^2?

A: +/- 1
B: 1 only
C: -1 only
D: 1, -1, or 0
E: 0 only

Answer: B - If A is diagonalizable then you can write it as PDP^{-1}. Thus $A^2 = (PDP^{-1})(PDP^{-1}) = PD^2P^{-1}$. Since the eigenvalues of a matrix go in the diagonal entries of the matrix between P and P^{-1}, then the eigenvalues of A^2 are the entries in D^2, +1 only.