Announcements

• Anonymous survey up on Piazza & the main Baskin Engineering page - please fill it out over the break if you haven't yet

• I’m going to post another poll on whether we should reduce the topics covered in the remainder of the class and slow down
Which of the following facts will ensure that an $n \times n$ matrix A is diagonalizable?

A: A is invertible
B: A has pure real eigenvalues
C: A has repeated eigenvalues
D: The eigenvectors of A form a basis for \mathbb{R}^n

Answer: D - This is just from the definition of diagonalizability. The only other statement that has any bearing on diagonalization at all is C, which if true may mean that A is not diagonalizable. You’d still have to look for an eigenbasis to be sure, but it should put you on the lookout for problems.