Announcements

- Everything up to section 6.5 (Wed lecture) is fair game for the final

- You can still bring a single sheet of paper with notes on it to the final
iClicker question #1

Which of the following sets of vectors forms an orthonormal basis for \mathbb{R}^3?

A:
\[
\begin{bmatrix}
1 \\
-1 \\
0
\end{bmatrix},
\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
\]

B:
\[
\begin{bmatrix}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{bmatrix},
\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
\]

C:
\[
\begin{bmatrix}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{bmatrix},
\begin{bmatrix}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} \\
0
\end{bmatrix}
\]

D: All of them

E: None of them

Answer: E - Choice A is an orthogonal basis of \mathbb{R}^3, but the vectors are not normalized so it is not an orthonormal basis. Choice B is a set of normalized vectors but they are not all orthogonal to each other (e.g., the first two). Choice C is an orthonormal basis, but only for a 2D subspace of \mathbb{R}^3 (not \mathbb{R}^2!). You need 3 linearly independent vectors to form a basis for \mathbb{R}^3 (notice that there's no way to get nonzero x_3 components from these two vectors).