Definition: An $m \times n$ **matrix** is a rectangular array with m rows and n columns:

$$
A = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn}
\end{bmatrix} \leftarrow \text{row } i
$$

\uparrow

\text{column } j

The entry in row i and column j is denoted by a_{ij}. These entries can be real numbers or complex numbers, (or functions, etc.).
Comments:

1. The *size* of a matrix is given by its dimensions $m \times n$.

2. Two matrices A and B are equal if and only if they have the same size and $a_{ij} = b_{ij}$ for every i and every j.

3. We denote by $\mathbb{R}^{m \times n}$ the set of all $m \times n$ matrices with real coefficients.

4. An $m \times 1$ matrix is called a *column vector*, and a $1 \times n$ matrix is called a *row vector*.

5. The space of all column vectors with m rows and real coefficients is denoted by \mathbb{R}^m. Likewise we denote by \mathbb{R}^n the space of all row vectors with n columns (and real coefficients).

In other words, we use \mathbb{R}^k to denote the space of vectors with k entries and real coefficients. Whether these are represented as rows or columns, depends on the context.
Definition: A *submatrix* of a matrix A is a matrix obtained from A by deleting some columns and/or rows from A.

For example, if

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 11 & 12 & 13 & 14 \\ 4 & 3 & 2 & 1 \end{bmatrix}$$

then

$$B = \begin{bmatrix} 1 & 2 \\ 11 & 12 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 1 & 3 & 4 \\ 4 & 2 & 1 \end{bmatrix}$$

are submatrices of A.
Matrix arithmetic

Scalar multiplication: If $A = [a_{ij}]$ is an $m \times n$ matrix and α is a scalar (a real or complex number), then $C = \alpha A$ is the matrix with entries $c_{ij} = \alpha a_{ij}$. For example

\[3 \cdot \begin{bmatrix} 1 & 2 & 3 & 4 \\ 11 & 12 & 13 & 14 \\ 4 & 3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 6 & 9 & 12 \\ 33 & 36 & 39 & 42 \\ 12 & 9 & 6 & 3 \end{bmatrix}\]

and

\[\left(-\frac{1}{2}\right) \cdot \begin{bmatrix} 2 & -3 \\ 5 & 4 \end{bmatrix} = \begin{bmatrix} -1 & 3/2 \\ -5/2 & -2 \end{bmatrix}\]
Addition: If \(A = [a_{ij}] \) and \(B = [b_{ij}] \) are two matrices of the *same size*, then \(C = A + B \) is the matrix with entries \(c_{ij} = a_{ij} + b_{ij} \). If the matrices \(A \) and \(B \) do not have the same (exact) size, then \(A + B \) is *not defined*. For example,

\[
\begin{bmatrix}
1 & 2 \\
11 & 12
\end{bmatrix} + \begin{bmatrix}
1 & -1 \\
-3 & 2
\end{bmatrix} = \begin{bmatrix}
2 & 1 \\
8 & 14
\end{bmatrix}
\]

but

\[
\begin{bmatrix}
1 & 2 & 3 \\
11 & 12 & 5
\end{bmatrix} + \begin{bmatrix}
1 & -1 \\
-3 & 2
\end{bmatrix}
\]

is simply *not defined.*

If \(A = [a_{ij}] \) is an \(m \times n \) matrix, then \(-A = [-a_{ij}] \). Observe that

\[
A + (-A) = O,
\]

the \(m \times n \) *zero matrix*, all of whose entries are \(= 0 \).
Properties of addition and scalar multiplication.

For A, B and C any matrices in $\mathbb{R}^{m\times n}$ and for O the $m \times n$ zero matrix, the following properties hold:

I. $A + B = B + A$

II. $A + (B + C) = (A + B) + C$

III. $A + O = A$

IV. $A + (-A) = O$

V. $1 \cdot A = A$

VI. $\alpha(\beta A) = (\alpha \beta)A$

VII. $\alpha(A + B) = \alpha A + \alpha B$

VIII. $(\alpha + \beta)A = \alpha A + \beta A$

Comments:

1. These properties generalize, and follow from the same properties for addition and (scalar) multiplication of real (or complex) numbers.

2. The fact that these properties hold make $\mathbb{R}^{m\times n}$ a vector space over \mathbb{R}. Of particular importance, is the fact that \mathbb{R}^n (the space of column/row vectors) is a vector space.
Linear combinations:

If \(\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_k \) are vectors in \(\mathbb{R}^n \) and \(c_1, c_2, \ldots, c_k \) are scalars then the vector

\[
y = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \cdots + c_k \mathbf{b}_k
\]

is a \textit{linear combination} of the vectors \(\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_k \), with coefficients \(c_1, c_2, \ldots, c_k \). Note that \(y \) is also in \(\mathbb{R}^n \).

\textbf{Example.} The linear combination of \[
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix},
\begin{bmatrix}
-1 \\
2 \\
-4
\end{bmatrix}
\]

and \[
\begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix}
\]

with coefficients 3, 2 and 1 is

\[
\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix} = 3 \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} + 2 \begin{bmatrix}
1 \\
-1 \\
2
\end{bmatrix} + 1 \begin{bmatrix}
-4 \\
1 \\
-4
\end{bmatrix} = \begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix}
\]
Matrix multiplication:

I. Multiplying a column vector by a row vector: If \(\mathbf{r} = [r_1 \ldots r_k] \) is a row (vector) with \(k \) entries and \(\mathbf{c} = \begin{bmatrix} c_1 \\ \vdots \\ c_k \end{bmatrix} \) is a column (vector), also with \(k \) entries, then \(\mathbf{r} \cdot \mathbf{c} \) is defined by

\[
\mathbf{r} \cdot \mathbf{c} = [r_1 \ldots r_k] \cdot \begin{bmatrix} c_1 \\ \vdots \\ c_k \end{bmatrix} = r_1 c_1 + \cdots + r_k c_k
\]

Comments:

1. This product is \textit{not} commutative. I.e., \(\mathbf{r} \cdot \mathbf{c} \neq \mathbf{c} \cdot \mathbf{r} \).

2. If \(\mathbf{r} \) and \(\mathbf{c} \) have different numbers of entries, then the product is \textit{not} defined.
Example:

\[
\begin{bmatrix}
1 & 2 & -1 & 3
\end{bmatrix}
\begin{bmatrix}
2 \\
0 \\
3 \\
1
\end{bmatrix}
= 1 \cdot 2 + 2 \cdot 0 + (-1) \cdot 3 + 3 \cdot 1 = 2.
\]

II. Multiplying a column by a matrix: If \(A \) is an \(m \times n \) matrix and \(\mathbf{b} \) is a column vector with \(n \) entries, then \(A \cdot \mathbf{b} \) is the column vector in \(\mathbb{R}^m \) whose entries are the row-column products of the rows of \(A \) with the column \(\mathbf{b} \):

\[
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{bmatrix}
= \begin{bmatrix}
a_{11}b_1 + a_{12}b_2 + \cdots + a_{1n}b_n \\
a_{21}b_1 + a_{22}b_2 + \cdots + a_{2n}b_n \\
\vdots \\
a_{m1}b_1 + a_{m2}b_2 + \cdots + a_{mn}b_n
\end{bmatrix}
\]
Example:

\[
\begin{bmatrix}
1 & 2 & -1 & 3 \\
2 & 0 & 4 & -3 \\
3 & -1 & 3 & -2
\end{bmatrix}
\begin{bmatrix}
2 \\
0 \\
3 \\
1
\end{bmatrix}
= \begin{bmatrix}
1 \cdot 2 + 2 \cdot 0 + (-1) \cdot 3 + 3 \cdot 1 \\
2 \cdot 2 + 0 \cdot 0 + 4 \cdot 3 + (-3) \cdot 1 \\
3 \cdot 2 + (-1) \cdot 0 + 3 \cdot 3 + (-2) \cdot 1
\end{bmatrix}
= \begin{bmatrix}
2 \\
13 \\
13
\end{bmatrix}
\]
III. Matrix multiplication, in general: If A is an $m \times k$ matrix with rows a_1, \ldots, a_m and B is a $k \times n$ matrix with columns b_1, \ldots, b_n, then the product AB is defined as

$$AB = \begin{bmatrix}
 a_1 \cdot b_1 & a_1 \cdot b_2 & \cdots & a_1 \cdot b_j & \cdots & a_1 \cdot b_n \\
 a_2 \cdot b_1 & a_2 \cdot b_2 & \cdots & a_2 \cdot b_j & \cdots & a_1 \cdot b_n \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 a_i \cdot b_1 & a_i \cdot b_2 & \cdots & a_i \cdot b_j & \cdots & a_i \cdot b_n \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 a_m \cdot b_1 & a_m \cdot b_2 & \cdots & a_m \cdot b_j & \cdots & a_m \cdot b_n
\end{bmatrix}$$

In words: the $(i, j)^{th}$ entry in the product AB is the row-column product of the i^{th} row of A with the j^{th} column of B.

Important: For the product to be defined, each row of A must have the same number of entries as each column of B.
Observations:

1. The j^{th} column of the product AB is $A b_j$, the product of the j^{th} column of B by the matrix A.

2. The number of columns in AB is equal to the number of columns in B. The number of rows in AB is equal to the number of rows in A.

3. If A is $m \times k$ and B is $k \times n$, then AB is $m \times n$.

4. If the number of columns in A is not equal to the number of rows in B, then the product AB is not defined.
Example:

\[
\begin{bmatrix}
1 & 1 & 0 \\
2 & 1 & 3 \\
4 & -1 & 1 \\
0 & 3 & -2 \\
\end{bmatrix}
\begin{bmatrix}
1 & -1 & 1 & 2 \\
2 & 1 & -3 & 0 \\
1 & 4 & -1 & 1 \\
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
1 + 2 + 0 & -1 + 1 + 0 & 1 - 3 + 0 & 2 + 0 + 0 \\
2 + 2 + 3 & -2 + 1 + 12 & 2 - 3 - 3 & 4 + 0 + 3 \\
4 - 2 + 1 & -4 - 1 + 4 & 4 + 3 - 1 & 8 + 0 + 1 \\
0 + 6 - 2 & 0 + 3 - 8 & 0 - 9 + 2 & 0 + 0 - 2 \\
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
3 & 0 & -2 & 2 \\
7 & 11 & -6 & 7 \\
3 & -1 & 6 & 9 \\
4 & -5 & -7 & -2 \\
\end{bmatrix}
\]
Properties of matrix multiplication:

1. Matrix multiplication **distributes over sums**: If A is an $m \times n$ matrix and B and C are both $n \times k$ matrices then
 \[
 A(B + C) = AB + AC
 \]
 Likewise, if D and E are both $l \times m$ matrices and F is an $m \times n$ matrix, then
 \[
 (D + E)F = DF + EF.
 \]

2. Matrix multiplication is **associative**: If A is an $m \times n$ matrix, B is an $n \times p$ matrix and C is a $p \times q$ matrix, then
 \[
 (AB)C = A(BC).
 \]

3. Matrix multiplication **commutes with scalar multiplication**: If A is $m \times n$, B is $n \times l$ and α is a scalar, then
 \[
 A(\alpha B) = \alpha(AB) = (\alpha A)B.
 \]
4. For every positive integer n, there is an $n \times n$ identity matrix:

$$I_n = \begin{bmatrix} 1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1 \end{bmatrix}$$

such that $I_n A = A$ for every $n \times m$ matrix A and $B I_n = B$ for every $k \times n$ matrix B.

Remark: The identity matrix is unique. I.e., if there is another matrix J such that $J A = A J = A$ for all $n \times n$ matrices A, then $J = I_n$. Because

$$J = J I_n = I_n$$
Properties that matrix multiplication does not have:

1. Matrix multiplication is **not commutative:**

(i) If A is $m \times n$ and B is $n \times k$, then AB is defined, but BA is not defined if $k \neq m$.

(ii) In the case that A is $m \times n$ and B is $n \times m$, then both AB and BA are defined, but if $n \neq m$, then AB and BA have **different sizes** and so cannot be equal.

(iii) Even in the case that both A and B are $n \times n$ (square) matrices the products AB and BA are usually **not equal** ...

\[
\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \neq \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}
\]
2. If $AB = O$ (the zero matrix), it does not follow that $A = O$ or $B = O$. E.g.,

$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

3. **Cancellation** does not hold in general. I.e., If $AB = AC$, it does not generally follow that $B = C$. E.g.,

$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 2 & 3 \end{bmatrix}$$
The **transpose of a matrix**: If A is an $m \times n$ matrix with entries a_{ij}, then A^T is the $n \times m$ matrix with entries α_{st} satisfying

$$\alpha_{st} = a_{ts}.$$

Loosely speaking, the j^{th} column of A^T is equal to the j^{th} row of A, rotated by 90°.

Example:

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
0 & 0 & 0 & 0
\end{bmatrix}^T = \begin{bmatrix}
1 & 5 & 0 \\
2 & 6 & 0 \\
3 & 7 & 0 \\
4 & 8 & 0
\end{bmatrix}$$
Transposes and arithmetic:

1. The transpose of a sum is the sum of the transposes:

\[(A + B)^T = A^T + B^T\]

2. The transpose of a scalar multiple is the scalar multiple of the transpose:

\[(\alpha \cdot A)^T = \alpha \cdot A^T\]

3. The transpose of a matrix product is the product of the transposes \textit{in reverse order}:

\[(AB)^T = B^T A^T\]
Example:

\[
\begin{pmatrix}
1 & 1 & 2 \\
2 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
2 & -1 \\
1 & 0 \\
1 & 1
\end{pmatrix}
=
\begin{pmatrix}
5 & 1 \\
5 & -1
\end{pmatrix}
\]

\[
\begin{pmatrix}
5 & 5 \\
1 & -1
\end{pmatrix}
\]

\[
\begin{pmatrix}
2 & 1 & 1 \\
-1 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 \\
1 & 0 \\
2 & 1
\end{pmatrix}
=
\begin{pmatrix}
2 & -1 \\
1 & 0 \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 2 \\
2 & 0 & 1
\end{pmatrix}
\]
The matrix form of a linear system.

Consider the linear system

\[a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \]
\[\vdots \]
\[a_{j1}x_1 + a_{j2}x_2 + \cdots + a_{jn}x_n = b_j \]
\[\vdots \]
\[a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \]

The \(j \)th equation can be written as

\[
\begin{bmatrix} a_{j1} & a_{j2} & \cdots & a_{jn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = b_j
\]
and the entire system can expressed as a single *matrix equation*:

\[
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
 a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}
=
\begin{pmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_m
\end{pmatrix}
\]

In other words, If \(S \) is a linear system of \(m \) equations in \(n \) variables, then this system can be expressed in the form \(A\mathbf{x} = \mathbf{b} \) where \(A \) is the \(m \times n \) coefficient matrix of the system, \(\mathbf{b} \) is the \(m \times 1 \) vector of constant terms and \(\mathbf{x} \) is the \(n \times 1 \) vector of variables.

Observation: The set of solutions of a linear system of \(m \) equations in \(n \) variables can be thought of as a set of vectors in \(\mathbb{R}^n \).
Example: The linear system

\[
\begin{align*}
2x_1 + x_2 - x_3 &= 1 \\
x_1 - 2x_2 + 3x_3 &= -1 \\
3x_1 - x_2 + 4x_3 &= 0
\end{align*}
\]

(1)

can be expressed as the matrix equation

\[
\begin{bmatrix}
2 & 1 & -1 \\
1 & -2 & 3 \\
3 & -1 & 4 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} =
\begin{bmatrix}
1 \\
-1 \\
0
\end{bmatrix}
\]

(2)

And the set of solutions of the linear system (1) can be expressed as the set of vectors \(\mathbf{x} \) in \(\mathbb{R}^3 \) that satisfy the equation (2).
Elementary row operations on the augmented matrix of (1) gives

\[
\begin{bmatrix}
2 & 1 & -1 & 1 \\
1 & -2 & 3 & -1 \\
3 & -1 & 4 & 0
\end{bmatrix} \Rightarrow \text{EROs} \Rightarrow
\begin{bmatrix}
1 & 0 & 5 & \frac{1}{5} \\
0 & 1 & 1 & \frac{3}{5} \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

So, in parametric form with parameter \(t \), the set of solutions of (1) are given by

\[
x_1 = \frac{1}{5} - 5t, \quad x_2 = \frac{3}{5} - t, \quad x_3 = t.
\]

As a set of vectors in \(\mathbb{R}^3 \), the set of solutions is the set of vectors:

\[
\left\{ \begin{bmatrix}
\frac{1}{5} - 5t \\
\frac{3}{5} - t \\
t
\end{bmatrix} : t \in \mathbb{R} \right\} = \left\{ \begin{bmatrix}
\frac{1}{5} \\
\frac{3}{5} \\
0
\end{bmatrix} + t \begin{bmatrix}
-5 \\
-1 \\
1
\end{bmatrix} : t \in \mathbb{R} \right\}
\]