1. (10 pts) The demand equation for a monopolistic firm’s product is given by \(p = 120 - 0.4q \), where \(p \) is the price per unit (in dollars) of the firm’s good and \(q \) is the weekly demand for this good (measured in individual units). The firm’s cost function is \(c = 0.1q^2 + 15q + 1000 \), where \(c \) is the weekly cost (in dollars) of producing \(q \) units, and where the firm’s weekly output is equal to the weekly demand.

Find the price that the firm should set to *maximize its profit*, the profit maximizing output and the maximum profit itself. You must verify that the critical profit that you found is indeed the firm’s maximum profit. *Show your work.*

(1) Revenue function: \(r = pq = 120q - 0.4q^2 \)

(2) Profit function: \(\Pi = r - c = 120q - 0.4q^2 - (0.1q^2 + 15q + 1000) = -0.5q^2 + 105q - 1000. \)

(3) Critical output: \(\Pi' = -q + 105 = 0 \implies q^* = 105. \)

(4) Critical price: \(p^* = 120 - 0.4q^* = 120 - 42 = 78. \)

(5) Critical profit: \(\Pi^* = -0.5(q^*)^2 + 105q^* - 1000 = 4512.50 \)

(6) Verification that \(\Pi^* \) is the max profit: \(\Pi'' = -1 < 0 \), so \(\Pi^* \) is a relative maximum, and since there is only one critical point, \(\Pi^* \) is the absolute maximum profit.