Final Exam – Make Up

Instructions

• There are 6 questions worth a total of 65 points. 100% = 60 points.

• No notes or books. A table of integration formulas is provided.

• You may use a simple scientific calculator. No graphing or programmable calculators.

• Take your time. Answer each question completely. Check your answers.

• For full credit—explain/show your work.

Good Luck!!!
Selected Integration Formulas

Basic rules.

1. \(\int u^k \, du = \frac{u^{k+1}}{k+1} + C, \quad k \neq -1. \)

2. \(\int \frac{1}{u} \, du = \ln |u| + C. \)

3. \(\int e^u \, du = e^u + C. \)

4. \(\int f(u) \pm g(u) \, du = \int f(u) \, du \pm \int g(u) \, du. \)

5. \(\int c \cdot f(u) \, du = c \cdot \int f(u) \, du. \)

Rational forms containing \((a + bu)\).

6. \(\int \frac{du}{a + bu} = \frac{1}{b} \ln |a + bu| + C. \)

7. \(\int \frac{udu}{a + bu} = \frac{u}{b} - \frac{a}{b^2} \ln |a + bu| + C. \)

8. \(\int \frac{u^2 \, du}{a + bu} = \frac{u^2}{2b} - \frac{au}{b^2} + \frac{a^2}{b^3} \ln |a + bu| + C. \)

9. \(\int \frac{u^2 \, du}{(a + bu)^2} = \frac{u}{b^2} - \frac{a^2}{b^3(a + bu)} - \frac{2a}{b^3} \ln |a + bu| + C. \)

Forms containing \(\sqrt{a + bu}\).

10. \(\int u \sqrt{a + bu} \, du = \frac{2(3bu - 2a)(a + bu)^{3/2}}{15b^2} + C. \)

11. \(\int \frac{u \, du}{\sqrt{a + bu}} = \frac{2(bu - 2a) \sqrt{a + bu}}{3b^2} + C. \)

12. \(\int \frac{u^2 \, du}{\sqrt{a + bu}} = \frac{2(3b^2u^2 - 4abu + 8a^2) \sqrt{a + bu}}{15b^3} + C. \)

Exponential and logarithmic forms.

13. \(\int e^{au} \, du = \frac{e^{au}}{a} + C. \)

14. \(\int ue^{au} \, du = \frac{e^{au}}{a^2} (au - 1) + C. \)

15. \(\int u^n e^{au} \, du = \frac{u^n e^{au}}{a} - \frac{n}{a} \int u^{n-1} e^{au} \, du. \)

16. \(\int u^n \ln u \, du = \frac{u^{n+1} \ln u}{n+1} - \frac{u^{n+1}}{(n+1)^2} + C, \quad n \neq -1. \)
1. (10 pts) Compute the *present value* of a continuous annuity that pays at the annual rate $f(t) = 2000t$ for $T = 10$ years, assuming that interest is compounded continuously at the rate $r = 4.2\%$.

b. (5 pts) Compute the *Gini coefficient* (of inequality) for the nation whose income distribution function is given by $f(x) = 0.7x^2 + 0.3x$.
2. (10 pts) Find the Consumers’ surplus and Producers’ surplus at equilibrium for the market whose supply and demand equations are given below.

- Supply: \(p = 15 + 0.75q \),
- Demand: \(p = 50 - 0.05q^2 \).
3. The Jones family’s utility function is given by

\[U(x, y, z) = 8 \ln x + 5 \ln y + 7 \ln z, \]

where \(x, y \) and \(z \) are the quantities of Xidgets, Yidgets and Zidgets, respectively, that they consume per month, for which the average prices per unit are \(p_x = $10, \ p_y = $8 \) and \(p_z = $12 \), respectively.

a. (6 pts) Find the quantities of Xidgets, Yidgets and Zidgets that the Jones family should consume each month to maximize their utility, given that their monthly XYZ-budget is \(B = $4800 \).

b. (2 pts) By approximately how much will the Jones' have to increase their monthly XYZ-budget from its current level to increase their (maximum) utility by 2 utils?

c. (2 pts) By approximately how much will the Jones’ (maximum) utility change from the value you found in a., if the average price of a Xidget increases by $1, assuming that the other prices and their budget stay the same? Justify your answer in terms of the envelope theorem.
4. (10 pts) Find the critical points of the function

\[f(x, y) = x^3 + 2x^2 + 4xy + y^2 + 2y + 3 \]

and classify the critical values using the second derivative test.
5. The average monthly demand (Q) for a monopolistic firm’s product is related to the price of their product (P), the average price of substitutes for their product (P_s) and the average monthly household income in the market for the firm’s product (Y), by the equation:

$$Q = \frac{150(2Y + 16P_s - 1600)^{3/4}}{3P + 10}.$$

a. (6 pts) Compute Q, Q_p, Q_{P_s}, and Q_Y when $P = 30$, $P_s = 31$ and $Y = 2600$.

b. (2 pts) What is the income-elasticity of demand at the point in part a.?

c. (2 pts) Suppose that income stays fixed, but both prices decrease by 1. Use your answer to a. to estimate the change in demand for the firm’s product.
6. (10 pts) The price elasticity of demand, $\eta_{q/p}$, for a monopolistic firm’s product is proportional to

$$\frac{p^{1/3}}{q},$$

where p is the price of the firm’s good and q is the demand for their product. Find the demand function $q = f(p)$ for the firm’s product, given that $f(10) = 100$ and $f(20) = 80$.