1. \[E[(x+y)^2] = E[x^2 + 2xy + y^2] \]
 \[= E[x^2] + 2E[xy] + E[y^2]. \]

 \(x, y \) are iid so \[E[y^2] = E[x^2] \]
 and \[E[xy] = E[x]E[y] \]
 and \[E[y] = E[x] \]

 \[= 2E[x^2] + 2(E[E])^2 \]

2. \[X = X_1 + X_2 + \ldots + X_r \]

 \(X_1 \): \# failures before 1st success.

 \(X_2 \): \# failures before 2nd success.

 \(\vdots \)

 \(X_r \): \# failures before \(r \)th success.

 The \(X_i \)'s are iid Geometric (p)

 \[\text{Var}(X) = \text{Var}(X_1 + X_2 + \ldots + X_r) \]

 \[= \text{Var}(X_1) + \text{Var}(X_2) + \ldots + \text{Var}(X_r) \]

 Variance of a Geometric (p) is \[\frac{1-p}{p^2} \]

 \[\Rightarrow \text{Variance of Negative Binomial (r, p)} = \frac{r(1-p)}{p^2} \]
3. \(X, Y \) iid \(N(0, 1) \).

\[w = x^2 + y^2 \]

\[f_w(w) = \frac{1}{2} e^{-w/2} \]

a) \(R^2 = w \)

\[R = w^{1/2} \]

\[f_r(r) dr = f_w(w) dw \]

\[f_r(r) = f_w(w) \frac{dw}{dr} \]

\[\frac{dw}{dr} = 2R = 2r \]

\[= \frac{1}{2} e^{-r^2/2} \cdot 2r = r e^{-r^2/2} \]

b) \(P(x > 2y + 3) \)

\[= \Phi(x - 2y > 3) \]

RV \(x - 2y \) is Normal, mean \(\mu = 0 \)

\[\text{variance} = 5 \]

Hence \(P(x - 2y > 3) \) is same as \(N(0, 5) > 3 \)

\[= 1 - \Phi \left(\frac{3}{\sqrt{5}} \right) \]
4.

a) \[E(U_1) = \frac{1}{2} \]
\[\text{Var}(U_1) = \frac{1}{12} \]

Mean of \(X \): \[E(X) = E(U_1) + E(U_2) + \ldots + E(U_{60}) \] (linearity of expectations)
\[= 60 \, E(U_1) \]
\[= 30 \]

\[\text{Var}(X) = \text{Var}(U_1) + \text{Var}(U_2) + \ldots + \text{Var}(U_{60}) \] (as \(U_i \)'s are independent)
\[= \frac{60}{12} = 5 \]

b) \[P(X > 17) \]

Approximate pdf of \(X \) by \(\mathcal{N}(30, 5) \).

\[P(X > 17) = P(Z > \frac{17 - 30}{5}) \]
\[= P(Z > \frac{-13}{\sqrt{5}}) \]
\[= P(Z > -2.8) \]
\[= 0.9975 \] (area to the left is approx. 1)
Number the 48 non-aces 1 through 48.

Let X_i be indicator that card with number i is dealt before any of the aces.

$$X = X_1 + X_2 + \ldots + X_{48}$$

is total # of cards before first ace.

and, by using linearity of expectation and symmetry,

$$E[X] = 48 \cdot E[X_1].$$

Expectation of an indicator RV is the prob. of the indicator RV taking the value 1.

What's the prob of card 1 being dealt before any of the 4 aces?

Consider the orderings of the 5 cards. One of them results in card 1 being dealt before any of the 4 aces.

$$\Rightarrow E[X_1] = \frac{1}{5}$$

$$\Rightarrow E[X] = \frac{48}{5}$$
\[p(\text{1st six appears on roll } k) = \left(\frac{5}{6} \right)^{k-1} \left(\frac{1}{6} \right) \quad k = 1, 2, \ldots \]

Event that Bob wins in all odd \(k \).

These are disjoint, so

\[p(\text{Bob wins}) = \sum_{k \text{ odd}} p(\text{1st six appears on roll } k) \quad \text{odd} \]

\[= \sum_{j=1}^{\infty} \left(\frac{5}{6} \right)^{2j-2} \left(\frac{1}{6} \right) \]

\[= \frac{1}{6} \sum_{j=1}^{\infty} \left(\frac{25}{36} \right)^{j-1} \]

\[= \frac{1}{6} \sum_{j=0}^{\infty} \left(\frac{25}{36} \right)^{j} \]

\[= \frac{1}{6} \cdot \frac{1}{1 - \frac{25}{36}} \]

\[= \frac{6}{11} \]
7. \[\binom{5}{3} \left(\frac{1}{3} \right)^3 \left(\frac{2}{3} \right)^2 \]
\[= \binom{10}{6}.\]

8. a) \[P(\text{dry on at least one of next 3 days})\]
\[= 1 - P(\text{rain on all 3 of next 3 days}).\]
\[= 1 - P(\text{wet tomorrow} \mid \text{wet today}) \times P(\text{wet in 2 days hence} \mid \text{wet tomorrow}) \]
\[\times P(\text{wet in 3 days hence} \mid \text{wet tomorrow})\]
\[= 1 - 0.4 \times 0.4 \times 0.4\]
\[= 0.936.\]

b) For Friday, it is given by
\[S^2 = T^2\]
\[S^T = \begin{bmatrix} 0.2 & 0.8 \\ 0.6 & 0.4 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.6 & 0.4 \end{bmatrix} = \begin{bmatrix} 0.62 & 0.38 \\ 0.62 & 0.38 \end{bmatrix}\]
\[S^T 2 = \begin{bmatrix} 0.62 & 0.38 \\ 0.62 & 0.38 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.6 & 0.4 \end{bmatrix} = \begin{bmatrix} 0.662 & 0.338 \\ 0.662 & 0.338 \end{bmatrix}\]
\[\Rightarrow \text{Prob. (wet on Friday)} = 0.338.\]