AMS 200 – Fall 2014
Introduction

Athanasios Kottas

Department of Applied Mathematics and Statistics, University of California, Santa Cruz

October 6, 2014
1 UCSC, SOE, AMS

2 Graduate program in Statistics and Applied Mathematics
AMS department

- The Department of Applied Mathematics and Statistics (AMS) is part of the Baskin School of Engineering
AMS department

- The Department of Applied Mathematics and Statistics (AMS) is part of the Baskin School of Engineering

- The other Departments of the School of Engineering:
 - Biomolecular Engineering
 - Computer Engineering
 - Computer Science
 - Electrical Engineering
 - Technology Management
AMS faculty (Applied Mathematics)

- **Nicholas Brummell** – fluid dynamics; magnetohydrodynamics; numerical simulations of geophysical and astrophysical dynamics; supercomputing

- **Pascale Garaud** – astrophysical and geophysical fluid dynamics; magneto-hydrodynamics; analytical and numerical solutions of PDEs related to these phenomena

- **Qi Gong** – computational optimal control for nonlinear systems; trajectory optimization and motion planning; optimal search, state and output feedback control of nonlinear systems; aerospace control applications

- **Dongwook Lee** – computational magnetohydrodynamics and gas dynamics; high-order shock capturing numerical methods; high-performance computing; numerical modeling of astrophysics and high-energy-density physics

- **Hongyun Wang** – single molecule studies and biophysics; statistical physics; stochastic differential equations
AMS faculty (Statistics)

- **David Draper** – Bayesian nonparametric methods; model specification and model uncertainty; risk assessment; applications in the environmental, medical, and social sciences

- **Rajarshi Guhaniyogi** – compressive methods for high dimensional regression; manifold regression; nonparametric Bayes; online learning with massive streaming data; spatial Bayes modeling for massive geostatistical datasets; applications in epidemiology, forestry, genomics, and neuroscience

- **Athanasios Kottas** – Bayesian nonparametrics; mixture models; modeling and inference for point processes; nonparametric regression; survival analysis; applications in biometrics, ecology, and the environmental sciences

- **Herbert Lee** – Bayesian statistics; computer simulation experiments; spatial statistics; optimization; inverse problems; nonparametric regression, classification and clustering
AMS faculty (Statistics)

- **Juhee Lee** – Bayesian statistics; Bayesian nonparametrics; modeling in biosciences and clinical trials

- **Raquel Prado** – Bayesian non-stationary time series modeling; multivariate time series; biomedical signal processing and statistical genetics

- **Abel Rodriguez** – Bayesian nonparametrics; Bayesian time series and spatial models; public health; financial econometrics; structural proteomics

- **Bruno Sansó** – Bayesian spatio-temporal modeling; environmental and geostatistical applications; modeling of extreme values; statistical assessment of climate variability
AMS faculty

- **Marc Mangel** (Distinguished Research Professor) – mathematical modeling of biological phenomena; statistical methods in fisheries management; mathematical and computational aspects of aging and disease; impact of technology on biological systems

- **Robin Morris** (Associate Adjunct Professor) – Bayesian analysis of scientific data, with applications in: Earth remote sensing; particle and astroparticle physics; signal processing and engineering

- **Tatiana Xifara** (Visiting Assistant Professor) – Bayesian statistics; computational statistics; hidden Markov models; diffusion processes; adaptive MCMC algorithms; point processes; applications in epidemiology and ecology

- **Yonatan Katznelson** (Lecturer)

- **Bruno Mendes** (Lecturer)

- **Valerie Poynor** (Lecturer)
On the stats side, Bayes rules in AMS!
Timeline for the MS degree

- **Academic Year 1**
 - 6 core courses + AMS 200 + AMS 280B
 - possible independent study courses (AMS 297) to explore research topics for the capstone project
 - first year qualifying examination

- **Academic Year 2**
 - a minimum of 2 additional 5-unit elective courses
 - capstone project to be read and approved by a committee consisting of the faculty advisor and one reader (at least one of the committee members must be from AMS)
Timeline for the PhD degree

Academic Year 1

→ 6 core courses + AMS 200 + AMS 280B
→ independent study courses (AMS 297/299) to explore possible PhD dissertation topics
→ first year qualifying examination

Academic Year 2

→ elective courses: in principle, 4 additional 5-unit courses required for the PhD degree; in practice, PhD students expected to take all electives
→ select PhD dissertation topic and advisor

Academic Year 3, Year 4, ...

→ elective courses
→ advancement to candidacy (by the end of spring AY 3 at the latest)
→ PhD dissertation defense
Core courses

- Six courses for each track all in the first year of the program

- **Statistics track:** AMS 203, AMS 211 (fall quarter); AMS 205B, AMS 206B (winter quarter); AMS 207, AMS 256 (spring quarter)

- **Applied Mathematics track:** AMS 203, AMS 211 (fall quarter); AMS 212A, AMS 214 (winter quarter); AMS 212B, AMS 213 (spring quarter)
First Year Exam

- FYE during or right after the final exams week of the spring quarter
 - in-class part: closed-notes, closed-book 4-hour exam based on 6 questions, one from each of the 6 core courses
 - take-home part: a problem that involves synthesis and application of methods and computing (submitted 48 hours after the in-class part)

- Detailed information for this year will be made available later
Further comments

- Students completing the MS program can request to transfer to the PhD program (must pass the FYE at the PhD level)
- Students in the PhD program may receive the MS degree upon completion of the MS degree requirements, including the capstone project
Further comments

- Students completing the MS program can request to transfer to the PhD program (must pass the FYE at the PhD level)
- Students in the PhD program may receive the MS degree upon completion of the MS degree requirements, including the capstone project
- Student seminars: Friday afternoon (∼ 3pm)
Further comments

- Students completing the MS program can request to transfer to the PhD program (must pass the FYE at the PhD level)
- Students in the PhD program may receive the MS degree upon completion of the MS degree requirements, including the capstone project

- Student seminars: Friday afternoon (≈ 3pm)

- Department seminars: Mondays at 4pm in E2-180
- AMS 280B (attending the department seminars) must be taken for at least one quarter per year
Students completing the MS program can request to transfer to the PhD program (must pass the FYE at the PhD level)

Students in the PhD program may receive the MS degree upon completion of the MS degree requirements, including the capstone project

Student seminars: Friday afternoon (~ 3pm)

Department seminars: Mondays at 4pm in E2-180

AMS 280B (attending the department seminars) must be taken for at least one quarter per year

The grad director strongly encourages you to take AMS 280B every quarter!
Financial support

- Teaching and research assistantships are the main sources of financial support.
- PhD students are required to serve as TAs for at least two quarters during their grad studies (certain exceptions apply).
Financial support

- Teaching and research assistantships are the main sources of financial support.

- PhD students are required to serve as TAs for at least two quarters during their grad studies (certain exceptions apply).

- Fellowships from external agencies, the most important being the NSF Graduate Research Fellowship Program (http://www.nsfgrfp.org/).
Financial support

- Teaching and research assistantships are the main sources of financial support.

- PhD students are required to serve as TAs for at least two quarters during their grad studies (certain exceptions apply).

- Fellowships from external agencies, the most important being the NSF Graduate Research Fellowship Program (http://www.nsfgrfp.org/)

- UCSC fellowships: Chancellor’s Dissertation Year Fellowship and President’s Dissertation Year Fellowship.
Financial support

- Teaching and research assistantships are the main sources of financial support.

- PhD students are required to serve as TAs for at least two quarters during their grad studies (certain exceptions apply).

- Fellowships from external agencies, the most important being the NSF Graduate Research Fellowship Program (http://www.nsfgrfp.org/)

- UCSC fellowships: Chancellor’s Dissertation Year Fellowship and President’s Dissertation Year Fellowship.

- Domestic students (non CA residents): make sure to work as early as possible on establishing CA residency!
For questions

- First year advisor
- Graduate director
- Graduate Advisor: Tracie Tucker
- Your fellow grad students!