1. Exercises 7.5.2 and 7.5.3

Solution: In exercise 7.5.2, where there is no restriction on the parameter space, the MLE for p is given by $58/70 = 0.8286$. In Exercise 7.5.3, the likelihood function is again given by $p^{58}(1-p)^{12}$, but now for p restricted in the interval $[1/2, 2/3]$. Since the likelihood function is increasing in p within this interval, the MLE is given by $2/3$.

2. Exercise 7.5.5

Solution: (a) To determine the MLE for p, begin by writing the likelihood,

$$f_n(x | \theta) = \prod_{i=1}^{n} \frac{e^{-\theta x_i}}{x_i!}$$

from which the log-likelihood function is given by

$$L(\theta) = -n\theta + \log(\theta)\left(\sum_{i=1}^{n} x_i\right) - \sum_{i=1}^{n} \log(x_i!)$$

Therefore, the derivative w.r.t. θ,

$$\frac{dL(\theta)}{d\theta} = -n + \sum_{i=1}^{n} \frac{x_i}{\theta}$$

equals 0 when $\theta = \sum_{i=1}^{n} x_i/n$, i.e., $\hat{\theta} = \bar{x}_n$ (it is straightforward to verify that the second derivative takes negative values).

(b) Note that if $x_i = 0$ for all i, then $f_n(x | \theta) = e^{-n\theta}$, which is decreasing as a function of θ. Since $\theta > 0$, θ can get arbitrarily close to 0 without ever reaching it, and therefore the MLE does not exist.

3. Exercise 7.5.7

Solution: The likelihood has the form

$$f_n(x | \beta) = \prod_{i=1}^{n} \beta \exp\{-\beta x_i\} = \beta^n \exp\{-\beta \sum_{i=1}^{n} x_i\}$$

Therefore the log-likelihood function, $L(\beta) = n \log(\beta) - \beta \sum_{i=1}^{n} x_i$, and $\frac{dL(\beta)}{d\beta} = \frac{n}{\beta} - \sum_{i=1}^{n} x_i$. Setting this to 0 and solving for β, we get $\hat{\beta} = n/(\sum_{i=1}^{n} x_i)$ (again, it is easy to check that the second derivative takes negative values).

4. Exercise 7.5.8

Solution: (a) The likelihood is $f_n(x | \theta) = \prod_{i=1}^{n} \exp\{\theta - x_i\}$ if all $x_i > \theta$, and 0 otherwise. The likelihood can therefore be written as $\exp\{n\theta - \sum_{i=1}^{n} x_i\}$, if $\min\{x_1, \ldots, x_n\} > \theta$, and 0 otherwise. This is an increasing function of θ, and is maximized when θ is made as large as possible, subject to the constraint $\theta < \min(x_1, \ldots, x_n)$. Since θ can get arbitrarily close to this value but never reach it, the MLE does not exist.

(b) However, if the strict inequality $x > \theta$ in the pdf becomes $x \geq \theta$, and $x \leq \theta$ is replaced by $x < \theta$, then $\hat{\theta} = \min\{x_1, \ldots, x_n\}$.

5. Exercise 7.5.11

Solution: The likelihood is given by $f_n(x | \theta_1, \theta_2) = (\theta_2 - \theta_1)^{-n}$ for $\theta_1 \leq x_i \leq \theta_2$ for all x_i, and is equal to 0 otherwise. This boundary condition for the likelihood to be non-zero can be stated as $\theta_1 \leq \min\{x_1, \ldots, x_n\} < \max\{x_1, \ldots, x_n\} \leq \theta_2$. To maximize the likelihood, we need to make $\theta_2 - \theta_1$ as small as possible subject to the inequalities above. That is, assign to θ_2 its smallest possible value and to θ_1 its largest possible value, resulting in $\hat{\theta}_2 = \max\{x_1, \ldots, x_n\}$ and $\hat{\theta}_1 = \min\{x_1, \ldots, x_n\}$.
6. Exercise 7.5.12

Solution: The likelihood is given by the multinomial distribution (see Section 5.9 of the textbook), which is a generalization of the Binomial distribution for \(k \geq 2 \) categories. The multinomial likelihood is proportional to \(\prod_{i=1}^{k} \theta_i^{n_i} \), where \(n_i \) represents the number of individuals of type \(i \) in the sample, and \(\theta_i \), for \(i = 1, \ldots, k \), are the respective probabilities that satisfy \(\sum_{i=1}^{k} \theta_i = 1 \). Therefore, the log-likelihood for the parameter vector \(\theta = (\theta_1, \ldots, \theta_{k-1}) \) can be written as

\[
L(\theta) = \sum_{i=1}^{k-1} n_i \log(\theta_i) + n_k \log(1 - \sum_{i=1}^{k-1} \theta_i).
\]

The \(k - 1 \) partial derivatives of this function are

\[
\frac{\partial L(\theta)}{\partial \theta_l} = \frac{n_l}{\theta_l} - \frac{n_k}{\theta_k}, \quad l = 1, \ldots, k - 1.
\]

Setting these equations equal to 0, gives \(\frac{n_l}{\theta_l} = \frac{n_k}{\theta_k} \), for \(l = 1, \ldots, k - 1 \), and therefore,

\[
\frac{n_1}{\theta_1} = \frac{n_2}{\theta_2} = \cdots = \frac{n_k}{\theta_k} = \frac{1}{C},
\]

subject to the constraint \(\sum_{i=1}^{k} \theta_i = 1 \). We thus have \(\hat{\theta}_i = C n_i \), for \(i = 1, \ldots, k \), and \(\sum_{i=1}^{k} \hat{\theta}_i = 1 \), which solving for \(C \) yields \(C = 1/n \). Therefore, \(\hat{\theta}_i = n_i/n \), for \(i = 1, \ldots, k \).

To verify that the critical point above provides the maximum, we need to show that the \((k - 1) \times (k - 1) \) Hessian matrix \(H(\theta) \), with elements \(\partial^2 L(\theta)/\partial \theta_i \partial \theta_j \), for \(i, j = 1, \ldots, k - 1 \), is a negative definite matrix when evaluated at \(\theta = (\hat{\theta}_1, \ldots, \hat{\theta}_k) = (n_1/n, \ldots, n_k/n) \). Consider the case with \(k = 3 \) which is the simplest extension of the Binomial distribution. In this case, the Hessian matrix is a \(2 \times 2 \) matrix with upper diagonal element \(- (n_1/\hat{\theta}_1^2) - (n_3/(1 - \hat{\theta}_1 - \hat{\theta}_2)^2)\), lower diagonal element \(- (n_2/\hat{\theta}_2^2) - (n_3/(1 - \hat{\theta}_1 - \hat{\theta}_2)^2)\), and off-diagonal element \(- (n_3/(1 - \hat{\theta}_1 - \hat{\theta}_2)^2)\). Since \(- (n_1/\hat{\theta}_1^2) - (n_3/(1 - \hat{\theta}_1 - \hat{\theta}_2)^2) < 0\), for all \((\theta_1, \theta_2) \), and \(\det(H(\theta_1, \theta_2)) > 0 \), for all \((\theta_1, \theta_2) \), the Hessian matrix is negative definite. The result can be extended for general \(k \geq 3 \); recall that one approach to check that matrix \(H(\theta) \) is negative definite is by verifying that its \(m \)-th order principal minor is negative when \(m \) is odd, and is positive when \(m \) is even.

7. Exercise 7.6.2

Solution: The standard deviation of a Poisson distribution with mean \(\theta \) is \(\theta^{1/2} \). Assuming that at least one observed count in the random sample is different from 0, the MLE of \(\theta \) was shown in exercise 7.5.5 to be \(\hat{\theta} = \bar{x} \). Therefore, using the invariance property for MLEs, the MLE of the standard deviation is \(\bar{x}^{1/2} \).

8. Exercise 7.6.4

Solution: Let \(Y \) denote the lifetime of the specific type of lamp. Then, the probability of a single lamp failing within \(T \) hours is given by \(p = \Pr(Y \leq T) = \int_0^T \beta \exp(-\beta y) \, dy = 1 - \exp(-\beta T) \). Based on the problem assumptions, the number \(X \) of lamps that fail within \(T \) hours follows a binomial distribution with parameters \(n \) and \(p \); there is a fixed number \(n \) of “trials” (testing of lamps); the trials are independent (assumption of a random sample); there are 2 possible outcomes on each trial (the lamp fails during the period of \(T \) hours or not); and \(p \) can be taken to be the same across trials (all \(n \) lamps are of the same type). The MLE for \(p \) is \(\hat{p} = X/n \), and using the invariance property of MLEs, the MLE of \(\beta \) can be obtained as \(\hat{\beta} = -\log(1 - (X/n))/T \).

9. Exercise 7.6.6

Solution: Subtract \(\mu \) and divide by \(\sigma \) in both sides of the inequality included in the probability, \(0.95 = \Pr(X < \theta) \), to obtain \(0.95 = \Pr(Z < (\theta - \mu)/\sigma) = \Phi((\theta - \mu)/\sigma) \), where \(Z \sim N(0, 1) \). Using the table for the distribution function of the standard normal distribution, we obtain \(\Phi(1.645) = 0.95 \), and therefore \((\theta - \mu)/\sigma = 1.645 \). The MLE for \(\theta \) is then obtained by solving for \(\theta \) in this equation and plugging in \(\hat{\mu} \) and \(\hat{\sigma} \), that is, \(\hat{\theta} = 1.645\hat{\sigma} + \hat{\mu} \), where the MLEs for \(\mu \) and \(\sigma \) are obtained in Example 7.5.6.
10. Exercise 7.6.15
Solution: Done in class.

11. Suppose that X_1, \ldots, X_n form a random sample from a double exponential distribution (also referred to as Laplace distribution) for which the p.d.f. is given by

$$f(x \mid \mu, \sigma) = \frac{1}{2\sigma} \exp \left(-\frac{|x - \mu|}{\sigma}\right), \quad \text{for } -\infty < x < \infty.$$

Here, μ is a location parameter and σ a scale parameter for the distribution, where $-\infty < \mu < \infty$ and $\sigma > 0$. Describe how the M.L.E. $\hat{\mu}$ of μ can be obtained (there is no closed-form expression for $\hat{\mu}$), and obtain the expression for the M.L.E. $\hat{\sigma}$ of σ. (Hint: use the profile likelihood approach discussed in class in the context of Example 7.5.6.)

Solution: The log-likelihood function can be expressed as

$$L(\mu, \sigma) = -n \log(2\sigma) - \frac{1}{\sigma} \sum_{i=1}^{n} |x_i - \mu|.$$

Using the profile likelihood approach, we first find the MLE of μ under fixed σ. Directly from the form of the log-likelihood function for fixed σ, maximizing $L(\mu, \sigma)$ w.r.t. μ is equivalent to minimizing $\sum_{i=1}^{n} |x_i - \mu|$ w.r.t. μ. The key observation is that, since this function does not depend on σ, the solution to this minimization problem will provide the MLE $\hat{\mu}$ for μ.

Next, to obtain the MLE of σ, we can maximize the profile log-likelihood for this parameter:

$$L(\hat{\mu}, \sigma) = -n \log(2\sigma) - \frac{1}{\sigma} \sum_{i=1}^{n} |x_i - \hat{\mu}|$$

which is straightforward using derivatives. The answer is $\hat{\sigma} = n^{-1} \sum_{i=1}^{n} |x_i - \hat{\mu}|$.

Note that it can shown that one solution for the MLE of μ is the sample median, though it is not the unique solution when n is even. For two different proofs of this result, refer to: Norton, R.M. (1984), “The Double Exponential Distribution: Using Calculus to Find a Maximum Likelihood Estimator”, The American Statistician, vol. 38, pp. 135-136; and Hurley, W. J. (2009), “An Inductive Approach to Calculate the MLE for the Double Exponential Distribution”, Journal of Modern Applied Statistical Methods, vol. 8, pp. 594-596.