AMS 261: Probability Theory (Winter 2014)

Homework 1 (due Thursday 1/23)

1. Consider a sample space Ω.
 (a) Prove that any intersection of σ-fields (of subsets of Ω) is a σ-field. That is, if $F_j, j \in J$, are σ-fields on Ω (with J an arbitrary index set, countable or uncountable), then show that $F = \bigcap_{j \in J} F_j$ is a σ-field.
 (b) Show by counterexample that a union of σ-fields may not be a σ-field.

2. Given a sample space Ω and a collection E of subsets of Ω, the σ-field generated by E, $\sigma(E)$, is defined as the intersection of all σ-fields on Ω that contain E. (As shown in class, $\sigma(E)$ is the smallest σ-field that contains E.)
 (a) Consider two collections E_1 and E_2 of subsets of Ω. Show that if $E_1 \subseteq E_2$, then $\sigma(E_1) \subseteq \sigma(E_2)$.
 (b) As in part (a), let E_1 and E_2 be collections of subsets of the sample space Ω. Prove that if $E_1 \subseteq \sigma(E_2)$ and $E_2 \subseteq \sigma(E_1)$, then $\sigma(E_1) = \sigma(E_2)$.

3. Let \mathcal{F} be a collection of subsets of a sample space Ω.
 (a) Suppose that $\Omega \in \mathcal{F}$, and that when $A, B \in \mathcal{F}$ then $A \cap B^c \in \mathcal{F}$. Show that \mathcal{F} is a field.
 (b) Suppose that $\Omega \in \mathcal{F}$, and that \mathcal{F} is closed under the formation of complements and finite pairwise disjoint unions. Show by counterexample that \mathcal{F} need not be a field.

4. Consider the sample space $\Omega = (0, 1]$ and the collection B_0 of all finite pairwise disjoint unions of subintervals of $(0, 1]$. That is, any member B of B_0 is of the form $B = \bigcup_{i=1}^{n} (a_i, b_i]$, where for each $i = 1, ..., n$, $0 \leq a_i < b_i \leq 1$, and $(a_i, b_i] \cap (a_j, b_j] = \emptyset$ for any $i \neq j$.
 Show that B_0 augmented by the empty set is a field, but not a σ-field.

5. Let $\Omega = \{\omega_1, \omega_2, \ldots\}$ be a countable set, $\{p_n : n = 1, 2, \ldots\}$ be a sequence of non-negative real numbers such that $\sum_{n=1}^{\infty} p_n = 1$, and \mathcal{F} be the collection of all subsets of Ω. For each $A \in \mathcal{F}$, define the set function
 \[
P(A) = \sum_{\{n : \omega_n \in A\}} p_n.
 \]
 Show that (Ω, \mathcal{F}, P) is a probability space.