1. Consider a sequence \(\{X_n : n = 1, 2, ...\} \) of \(\mathbb{R} \)-valued random variables defined on the same probability space \((\Omega, \mathcal{F}, P)\). Assume that the sequence is (pointwise) increasing, that is, for all \(n \) and for each \(\omega \in \Omega \), \(X_n(\omega) \leq X_{n+1}(\omega) \). Moreover, assume that \(E(X_1) > -\infty \). Denote by \(X \) the pointwise limit of \(\{X_n : n = 1, 2, ...\} \), that is, for each \(\omega \in \Omega \), \(X(\omega) = \lim_{n \to \infty} X_n(\omega) \).

- Prove that \(E(X) = \lim_{n \to \infty} E(X_n) \).

2. Let \(\{X_n : n = 1, 2, ...\} \) be a countable sequence of \(\mathbb{R}^+ \)-valued random variables defined on a common probability space \((\Omega, \mathcal{F}, P)\), and assume that \(E(\sum_{n=1}^{\infty} X_n) < \infty \).

- Show that \(E \left(\sum_{n=1}^{\infty} X_n \right) = \sum_{n=1}^{\infty} E(X_n) \).

3. Let \(\{X_n : n = 1, 2, ...\} \), \(\{Y_n : n = 1, 2, ...\} \), and \(\{Z_n : n = 1, 2, ...\} \) be sequences of \(\mathbb{R} \)-valued random variables (all the random variables are defined on the same probability space). Assume that:
 (a) \(E(X_n) \) and \(E(Z_n) \) exist for all \(n \) and are finite;
 (b) each of the three sequences converges almost surely (denote by \(X, Y, \) and \(Z \) the respective almost sure limits);
 (c) \(E(X), E(Y), \) and \(E(Z) \) exist and are finite;
 (d) \(X_n \leq Y_n \leq Z_n \) almost surely;
 (e) \(\lim_{n \to \infty} E(X_n) = E(X) \), and \(\lim_{n \to \infty} E(Z_n) = E(Z) \).

- Show that \(\lim_{n \to \infty} E(Y_n) = E(Y) \).

4. Let \(\{X_n : n = 1, 2, ...\} \) be a countable sequence of \(\mathbb{R} \)-valued random variables defined on a common probability space \((\Omega, \mathcal{F}, P)\). Assume that there exist finite real constants \(p > 1 \) and \(K > 0 \) such that \(\sup_n E(|X_n|^p) \leq K \).

- Show that \(\{X_n : n = 1, 2, ...\} \) is uniformly integrable.

5. Let \(X \) be an \(\mathbb{R} \)-valued random variable, defined on a probability space \((\Omega, \mathcal{F}, P)\), with finite expectation \(\mu = E(X) \) and finite standard deviation \(\sigma = (\text{Var}(X))^{1/2} \).

- Prove that for any \(0 \leq z \leq \sigma \),

\[
P \left(\{ \omega \in \Omega : |X(\omega) - \mu| \geq z \} \right) \geq \frac{\sigma^4 \{ 1 - (z/\sigma)^2 \}^2}{E(|X - \mu|^4)}.
\]

6. Let \(\{X_n : n = 1, 2, ...\} \) be a sequence of \(\mathbb{R} \)-valued random variables defined on a common probability space \((\Omega, \mathcal{F}, P)\). Suppose there exists an \(\mathbb{R}^+ \)-valued random variable \(Y \), defined on \((\Omega, \mathcal{F}, P)\), such that \(E(Y) < \infty \) and \(|X_n| \leq Y \), almost surely, for all \(n \).

- Show that \(\{X_n : n = 1, 2, ...\} \) is uniformly integrable.

7. Consider a countable sequence \(\{X_n : n = 1, 2, ...\} \) of \(\mathbb{R} \)-valued random variables, defined on a common probability space \((\Omega, \mathcal{F}, P)\), and an increasing function \(G : [0, \infty) \to [0, \infty) \), which satisfies \(\lim_{t \to \infty} \{ t^{-1} G(t) \} = \infty \) and \(0 < \sup_n E\{G(|X_n|)\} < \infty \).

- Prove that \(\{X_n : n = 1, 2, ...\} \) is uniformly integrable.