1. Consider real-valued random variables \(A_i, B_i \), \(i = 1, \ldots, k \), such that \(\text{E}(A_i) = \text{E}(B_i) = 0 \) and \(\text{Var}(A_i) = \text{Var}(B_i) = \sigma_i^2 > 0 \), for \(i = 1, \ldots, k \). Moreover, assume they are mutually uncorrelated, that is, \(\text{E}(A_i A_l) = \text{E}(B_i B_l) = 0 \), for \(i \neq l \), and \(\text{E}(A_i B_l) = 0 \), for all \(i, l \). Define the stochastic process \(X = \{X_t : t \in \mathbb{R}\} \) by \(X_t = \sum_{i=1}^k (A_i \cos(w_i t) + B_i \sin(w_i t)), \) where \(w_i, i = 1, \ldots, k \), are real constants. Show that \(X \) is weakly stationary but not strongly stationary.

2. Consider a discrete-time real-valued stochastic process \(X = \{X_n : n \geq 1\} \) defined by \(X_n = \cos(n U), \) where \(U \) is uniformly distributed on \((-\pi, \pi) \). Show that \(X \) is weakly stationary but not strongly stationary.

3. Let \(\{Z_n\} \), for integer \(n \), be a sequence of real-valued random variables with \(\text{E}(Z_n) = 0 \), \(\text{Var}(Z_n) = 1 \) and \(\text{E}(Z_n Z_m) = 0 \), \(n \neq m \). Consider a moving average process associated with \(\{Z_n\} \), that is, a discrete-time real-valued process \(Y = \{Y_n\} \), with integer \(n \), given by \(Y_n = Z_n + a Z_{n-1} \), where \(a \) is a real constant. Show that \(Y \) is weakly stationary and find its covariance function. Obtain the spectral density function of \(Y \).

4. Consider a weakly stationary process \(X = \{X_t : t \in \mathbb{R}\} \) with zero mean and unit variance. Find the correlation function of \(X \) if the spectral density function \(f \) of \(X \) is given by:
 (a) \(f(u) = (2\pi)^{-1/2} \exp(-0.5u^2), \) \(u \in \mathbb{R} \).
 (b) \(f(u) = 0.5 \exp(-|u|), \) \(u \in \mathbb{R} \).

5. Show that a Gaussian process is strongly stationary if and only if it is weakly stationary.

6. Let \(W = \{W_t : t \geq 0\} \) be a continuous-time, real-valued Gaussian process such that:
 (a) \(W_0 = \omega \), where \(\omega \) is a real constant.
 (b) \(W \) has independent increments, that is, the random variables \(W_{t_1} - W_{s_1}, \ldots, W_{t_n} - W_{s_n} \) are independent whenever the intervals \((s_j, t_j], \) \(j = 1, \ldots, n \), are disjoint.
 (c) \(W_{s+t} - W_s \) follows a \(N(0, \sigma^2 t) \) distribution, for all \(s, t \geq 0 \), where \(\sigma^2 \) is a positive constant. Define the continuous-time, real-valued stochastic process \(X = \{X_t : t \geq 1\} \), by \(X_t = W_t - W_{t-1} \). Show that \(X \) is strongly stationary and find its spectral density function.

7. **Gaussian Markov processes.** By definition, a continuous-time real-valued stochastic process \(X = \{X_t : t \in \mathbb{R}\} \) is called a Markov process if for all \(n \), for all \(x, x_1, \ldots, x_{n-1} \), and all increasing sequences \(t_1 < t_2 < \ldots < t_n \) of index points,
 \[
 \Pr(X_{t_n} \leq x \mid X_{t_1} = x_1, \ldots, X_{t_{n-1}} = x_{n-1}) = \Pr(X_{t_n} \leq x \mid X_{t_{n-1}} = x_{n-1}).
 \]
 Consider a (real-valued) Gaussian process \(Y = \{Y_t : t \in \mathbb{R}\} \). Show that \(Y \) is a Markov process if and only if \(\text{E}(Y_{t_n} \mid Y_{t_1} = y_1, \ldots, Y_{t_{n-1}} = y_{n-1}) = \text{E}(Y_{t_n} \mid Y_{t_{n-1}} = y_{n-1}) \), for all \(n, y_1, \ldots, y_{n-1} \) and all increasing sequences \(t_1 < t_2 < \ldots < t_n \) of index points.

8. **Stationary Gaussian Markov processes.** Consider a continuous-time real-valued stochastic process \(X = \{X_t : t \geq 0\} \), which is assumed to be Gaussian, stationary (with mean 0), and Markov. Show that the covariance function \(c(\cdot) \) of \(X \) satisfies the functional equation
 \[
c(0)c(t_1 + t_2) = c(t_1)c(t_2), \quad \forall t_1, t_2 \geq 0.
 \]