AMS 7
More on Regression
Lecture 14

How good is a regression model?

→ Statistical significance - test if $\beta_1 = 0$
→ Practical significance - r^2
→ Check model assumptions - residual plots
Hypothesis Testing for Regression

- The model is \(y = \beta_0 + \beta_1 x \), where \(\beta_0 \) and \(\beta_1 \) are population parameters.

→ If there is a linear relationship between \(x \) and \(y \) then \(\beta_1 \neq 0 \).

- This is a **t-test** with \(n - 2 \) degrees of freedom.
 1. \(H_0: \beta_1 = 0 \) vs. \(H_1: \beta_1 \neq 0 \)
 2. Level of significance \(\alpha = 0.05 \)
 3. Test statistic: \(t = \frac{b_1 - 0}{s_{b_1}} \) (sampling distribution under \(H_0 \) is \(t \) with \(n - 2 \) df)
 4. Compute \(t \) and its p-value with JMP
 5. Reject if p-value < 0.05
 6. Draw conclusions about linear relationship

\[
r^2 = \text{square of correlation between } x \text{ and } y
\]

= % of variability in \(y \) is explained by predicting from \(x \)

\[
= \frac{\sum_{i=1}^{n}(\hat{y}_i - \bar{y})^2}{\sum_{i=1}^{n}(y_i - \bar{y})^2}
\]

= explained variation

\[
\text{total variation}
\]

→ Recall that \(s_y^2 = \frac{1}{n-1} \sum_{i=1}^{n}(y_i - \bar{y})^2 \)

- \(0 \leq r^2 \leq 1 \)
- Gives a measure for practical significance
Model assumptions:
1. y is normally distributed with mean $\beta_0 + \beta_1 x$ and standard deviation σ.
2. The relationship between x and y is linear.
3. σ is the same for all observations.
4. The observation (x_i, y_i) is independent of (x_j, y_j) (conditional on β_0, β_1)

** How do we check these?
→ Hypothesis test for (1) and (2).
→ Residual analysis for (2), (3) and (4).

Residuals: $e_i = y_i - \hat{y}_i$
→ Plot x_i vs. e_i or \hat{y}_i vs. e_i (BUT not y_i vs. e_i, which are correlated)
→ Make sure there are no patterns in the plot
• check for non-linearity
• check for change in variability (heteroscedasticity)

Patterns indicate violations of assumptions!

Prediction is valid only when statistically significant and no problems with residuals.

Prediction interval: a confidence interval for a predicted value
- get from JMP.
Key Concepts!!!!

- Test for linear relationship
- r^2
- Residual analysis