Week 3 Solutions to evens (odds in book)

All 2-7 (review exercises) have solutions in the back of the book.

3.2.4 a) 2 c) \(\frac{1}{10} \) e) \(\frac{1}{5} \)
 b) 0 d) \(\frac{1}{2} \)

3.2.14

If the sample is representative and conditions next year are similar enough to last year, then

\[
P(\text{selected driver has accident}) = \frac{136}{400} = .341
\]

This is concerning for that age bracket.

3.3.2 a) disjoint b) disjoint c) not disjoint

3.3.8

Let \(A \) be the event that the selected person's birth day is in October, and assume that being born on any day is equally likely (not true in reality). Then

\[
P(\complement A) = 1 - P(A) = 1 - \frac{31}{365} = \frac{334}{365} = .915
\]

3.3.10

\[
P(\text{man or survived}) = \frac{1360 + 352 + 318 + 29 + 27}{2223} = .929
\]

3.3.16 \(n = 100 \)

\[
P(\text{group A or group B}) = \frac{35 + 8 + 2 + 5}{100} = .5
\]
3.4.2 a) independent (as long as your calculator doesn't plug in, isn't wedged in the refrigerator's compressor, etc...)

3.4.6 \[P(\text{not pregnant or test neg}) = \frac{3 + 11 + 5}{99} = \frac{19}{99} \approx 0.195 \]

3.5.8 assuming that boys and girls are equally likely

let A be the event at least one girl child

\[P(A) = 1 - P(A^c) = 1 - 0.5^{12} \approx 0.999756 \]

if the parents have no girls, then under our assumptions, their chance of this happening is VERY small

3.5.20 \[P(\text{Man or Woman | died}) = \frac{1360 + 104}{1360 + 104 + 35 + 18} = 0.965 \]

3.5.26 a) \[P(\text{HIV | test neg}) = \frac{P(\text{HIV} \cap \text{test neg})}{P(\text{test neg})} \]

by Bayes

\[\frac{P(\text{test neg} | \text{HIV}) \cdot P(\text{HIV})}{P(\text{test neg} | \text{HIV}) \cdot P(\text{HIV}) + P(\text{test neg} | \text{HIV}^-) \cdot P(\text{HIV}^-)} \]

\[= \frac{0.05 \cdot 1}{0.05 \cdot 1 + 0.95 \cdot 0.0058} \approx 0.0058 \]

b) \[P(\text{test negative | HIV}) = \frac{1}{0.05} = 0.05 \]

3.6.10 retrospective