In statistics, a hypothesis is a claim or statement about a property of the population.

A hypothesis test is a statistical method for testing a hypothesis.

Examples:

Medical researchers claim that the mean body temperature of healthy adults is 98.6°F.

The average lifespan of MacBook Pro laptops is 10 years.

The percentage of people with green eyes.

Rare Event Rule for Inferential Statistics

If, under a given assumption, the probability of a particular observed event is exceptionally small, we conclude that the assumption is probably not correct.
Example 1: The cookie company claims the average cookie weight is 11g. If we observe a bag of 32 cookies has an average cookie weight of 10.9g, is our sample mean just random variation from a population mean, or did we get ripped off? Suppose that the sd is known to be 0.5g.

6-Step Method for hypothesis tests
1. State the hypothesis (always in terms of population parameters; steps 1-3 in book)
2. Determine the level of significance (0.05 unless otherwise specified)
3. Determine the test statistic (something that can be looked up in a table)
4. Compute the test statistic and either the critical region or the p-value
5. Reject or fail to reject
6. State conclusions in the context of the original problem

1) Claim: either $\mu = 11$ or $\mu < 11$
 - We use the one with the equality as the null hypothesis, and the other as the alternative hypothesis.
 - The null is the default (what we assume to be true).
 - We only conclude the alternative if there is enough evidence.
 - i.e. Like in a trial the defendant is innocent until proven guilty.
 - Failure to reject the null is a lack of evidence; it does NOT mean the null is necessarily true.
 - If we are trying to prove that something is true, we must make it our alternative hypothesis.
 - If we are just trying to show that an assumption is reasonable, we can make it the null hypothesis.
 - If we show that the null is NOT reasonable, we can conclude the alternative is HIGHLY LIKELY to be true.
Star Write the hypothesis in terms of population parameters, and define them!!!

So, \(H_0 : \mu = 11 \) (claim)
\(H_1 : \mu < 11 \)
where \(\mu \) is the population mean cookie weight

2) Level of significance is \(\alpha = 0.05 \) unless otherwise specified

3) Test statistic: here we are testing a mean with \(\sigma \) known, so

\[
z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} \quad \text{(normal)}
\]

If \(\sigma \) is unknown, use

\[
t = \frac{\bar{x} - \mu}{s/\sqrt{n}} \quad \text{(t with n-1 degrees of freedom)}
\]

For a proportion, use

\[
z = \frac{\hat{p} - p}{\sqrt{p(1-p)/n}} \quad \text{(normal)}
\]

4) The critical region is the set of values of the test statistic that would cause us to reject the null hypothesis - those values that would be highly unusual if the null were true.

★ Unusual is defined by the level of significance, the probability we are willing to be wrong when the null is true.

★ If the null is true, then \(z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} \) follows the standard normal distribution.

★ For the cookie example, if our sample mean is too small, we will reject the null. How small is too small?

\[
\rightarrow P(z < -1.645) = 0.05 \quad \text{(from z table)}
\]

\[
\begin{align*}
\text{Standard Normal} \\
0.05 \\
0.15 \\
0.20 \\
0.25 \\
0.30 \\
0.35 \\
0.40 \\
0.45 \\
0.50 \\
0.55 \\
0.60 \\
0.65 \\
0.70 \\
0.75 \\
0.80 \\
0.85 \\
0.90 \\
0.95 \\
1.00 \\
\end{align*}
\]

So, we will reject the null hypothesis if \(z < -1.645 \). The actual test statistic is

\[
z = \frac{10.9 - 11}{0.5/\sqrt{32}} = -1.13.
\]
5) Fail to reject, since $-1.13 \not< -1.645$

6) Fail to reject the claim that the population mean cookie weight is 11g and: **Conclude that there is not sufficient evidence to warrant rejection of the claim that the population mean weight is 11g.** (see p.327 in book)

Type I and Type II errors:

- A **Type I** error is rejecting the null when it is actually true (convicting an innocent guy)
- A **Type II** error is failing to reject when the null is actually false (not convicting a guilty guy)

- We generally consider Type I error to be worse, so we limit those to the fixed significance level (α) and try to minimize the probability of a Type II error. (β)

- The **power** of a test β is the probability of rejecting when the alternative is true ($1 - \beta$).
Example 2: A manufacturer is concerned that their soda-filling machine may not be properly calibrated. A sample of 18 20oz bottles is found to have an average content of 19.96oz with a sd of 0.04oz. Test the claim that the machine is properly calibrated?

1. $\mu = 20$ (claim) vs $\mu \neq 20$

 $H_0: \mu = 20$ where $\mu =$ population mean bottle content

 $H_1: \mu \neq 20$

2. $\alpha = 0.05$

3. test for a mean, with σ UNKNOWN $\Rightarrow t = \frac{\bar{x} - \mu}{s/\sqrt{n}}$ t with 17 degrees of freedom

4. Two-tailed test, reject if $t < -2.11 \ OR \ t > 2.11$ (critical region). Compute $t = \frac{19.96 - 20}{0.04/\sqrt{18}} = -4.24$.

5. Reject the null, since $-4.24 < -2.11$

6. Conclude that there is sufficient evidence to warrant rejection of the claim that the mean bottle content is 20oz.

p-value:

- An alternative to finding the critical region is to compute the p-value, a measure of how unusual our observed data would be if the null was true.

$p = \text{probability of observing a test statistic as or more extreme than the one we observed, assuming the null hypothesis is true.}$

- We reject when $p < \alpha$! !

Example 1: $H_0: \mu = 11$ vs $H_1: \mu < 11$, reject if $z < -1.645$ so “extreme” is very negative

$z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} = -1.13 \quad p = P(z < -1.13) = 0.1262 \quad p > 0.05$

$\Rightarrow \text{fail to reject}$

If $\mu = 11$, the probability of seeing a test statistic at least as extreme as we got is 0.1292.
†† Example 2:
$H_0 : \mu = 20$ vs $H_1 : \mu \neq 20$,
reject if $t < -2.11$ OR $t > 2.11$ so “extreme” is very negative OR very positive

$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}} = -4.24$$

$$p = P(t < -4.24) + P(t > 4.24) = 2P(t < -4.24) \text{ from } t\text{-table}$$

$p < 0.01$ ($p = 0.0055$ from calculator)

$p < 0.05 \Rightarrow$ reject H_0

If $\mu = 20$, the probability of seeing a test statistic at least as extreme as we got is <0.01 (or 0.0055).

†† Example 3: In a recent poll of 1207 people, 53% disapproved of the way Bush is handling the economy. Test the claim that Bush’s approval rating is NOT DUE to random variation from on even split.

1. $H_0 : p = 0.5$ vs $H_1 : p \neq 0.5$ (claim)
2. $\alpha = 0.05$
3. Recall: that if X is binomial with n and p, then by CLT \hat{p} is approx. normal with mean p and sd $\sqrt{p(1-p)/n}$. So, the test statistic is $z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$ note: use of p rather than \hat{p} as in CI
4. $z = \frac{0.53 - 0.5}{\sqrt{\frac{0.5(0.5)}{1207}}} = 2.08$
 (a) Critical Region: reject if $z < -1.96$ or $z > 1.96$ OR
 (b) p-value = $P(|Z| > 2.08) = 2P(Z < -2.08) = 2(0.0188) = 0.0376$
5. Reject the null, (a) since $2.08 > 1.96$ (b) since p-value< 0.05
6. Conclude that the sample data support the claim that Bush’s approval rating is NOT DUE to random variation from on even split.
Note: There are 3 equivalent ways to reach the same conclusion:

- Is the hypothesized population proportion, p, outside of the 95% CI?
- Is the test statistic in the critical region?
- Is the p-value < 0.05?

Key Concepts!!!!!

- Hypothesis Test: for mean with σ known and unknown AND for proportions
- 6 Step Method
- Type I and II errors
- p-values