AMS 7
More on Regression
Lecture 15

Department of Applied Mathematics and Statistics, University of California, Santa Cruz

Winter 2014
How good is a regression model?

- Statistical significance - test if $\beta_1 = 0$
- Practical significance - r^2
- Check model assumptions - residual plots
Hypothesis Testing for Regression

★ The model is $y = \beta_0 + \beta_1 x$, where β_0 and β_1 are population parameters.

→ If there is a linear relationship between x and y then $\beta_1 \neq 0$.

♣ This is a t-test with $n - 2$ degrees of freedom.

1. H_0: $\beta_1 = 0$ vs. H_1: $\beta_1 \neq 0$
2. Level of significance $\alpha = 0.05$
3. Test statistic: $t = \frac{b_1 - 0}{s_{b_1}}$ (sampling distribution under H_0 is t with $n - 2$ df)
4. Compute t and its p-value with JMP
5. Reject if p-value < 0.05
6. Draw conclusions about linear relationship
\[r^2 = \text{square of correlation between } x \text{ and } y \]

= \% of variability in \(y \) is explained by predicting from \(x \)

\[= \frac{\sum_{i=1}^{n}(\hat{y}_i - \bar{y})^2}{\sum_{i=1}^{n}(y_i - \bar{y})^2} \]

= explained variation

\[\text{total variation} \]

\[\rightarrow \text{Recall that } s_y^2 = \frac{1}{n-1} \sum_{i=1}^{n}(y_i - \bar{y})^2 \]

- \(0 \leq r^2 \leq 1 \)

- Gives a measure for practical significance
Model assumptions:

1. y is normally distributed with mean $\beta_0 + \beta_1 x$ and standard deviation σ.
2. The relationship between x and y is linear.
3. σ is the same for all observations.
4. The observation (x_i, y_i) is independent of (x_j, y_j) (conditional on β_0, β_1)

How do we check these?

→ Hypothesis test for (1) and (2).
→ Residual analysis for (2), (3) and (4).
Residuals: \(e_i = y_i - \hat{y}_i \)

→ Plot \(x_i \) vs. \(e_i \) or \(\hat{y}_i \) vs. \(e_i \) (BUT not \(y_i \) vs. \(e_i \), which are correlated)

→ Make sure there are no patterns in the plot

 • check for non-linearity

 • check for change in variability (heteroscedasticity)

Patterns indicate violations of assumptions!

Prediction is *valid* only when statistically significant and no problems with residuals.

Prediction interval: a confidence interval for a predicted value - get from JMP.
Key Concepts!!!!!

- Test for linear relationship
- r^2
- Residual analysis