Multiple Sequence Alignment

- Multiple sequence alignment (MSA) is one of the most important bioinformatics tools
- Many applications require accurate MSAs
 - PSI-BLAST
 - Family and domain classification
 - Pattern identification
 - Structure prediction
 - secondary structure
 - fold recognition
 - Phylogeny
 - Full-genome alignments in browsers
In Proteins, Common Conservation Patterns

- Cys pairs - disulfide bonds
- His, Ser - catalytic sites
- Cys, His - metal binding sites
- Gly, Pro - ends of 2° structure elements, turns
- Lys, Arg, Asp, Glu - ligand binding
- Lys/Arg-Asp/Glu pairs - salt bridges
- Leu - coiled coils, leucine zippers
- Motifs, secondary structure, indels
Methods

• Dynamic Programming
 • Gives the optimal solution, but prohibitively slow for >6-8 sequences
 • “MSA” program is an example
• Progressive Alignment
 • ClustalW
 • http://www.ebi.ac.uk/Tools/clustalw2/ (most commonly used)
 • Tcoffee
 • http://www.ebi.ac.uk/Tools/t-coffee/
 • http://igs-server.cnrs-mrs.fr/Tcoffee/ (better but but slower)
• Iterative
 • Uses progressive alignment, but iterates over all aligned sequences to often give better results than straight progressive methods
 MUSCLE
 • http://www.ebi.ac.uk/Tools/muscle/
• Dialign
• HMMs
Progressive Alignment

1. Calculate global pair-wise alignments for all pairs
 - Needleman and Wunsch

2. Use pairwise alignment scores to calculate a guide tree describing the distance between all pairs of sequences

3. Align the sequences progressively
 - Start with the two most closely related sequences
 - Add in sequences in order of increasing distance

- ClustalW uses this method
ClustalW Example

- Input: 5 sequences detected by BLASTp using human SNAP-25 as a query
- Default parameters, output order: input

>sp_P13795
MAEDADMRELEEMQRRADQLADELSTRLMLVEESKDAGIRTVMMLDEQGELRIEEGMDQINKDKMEAEKNLTDLGKFCGLCPCNKLSLSSDAYKKAQWNQDGVVASQPAPVRVDEREQMMAISDFGIRRVTNDARENEOMDENLEQVSGIIGNLRHMAIDMGNEIDTQNRQIDRIMEKADSNKTRIDAEANQRTATMLGS

>gi_31242623
MPAAAPPAPAENGAAVPKTETLQELQMQQVYRDLDSTRLMLCEESTEVGHRTIVMLDEQGELRIEEGMDQINADSNEAKNLGMEKCCGICVLPCNCKSASFKEEDDTWKNGDGVVNPQQFRVHDRLNLGPAQYIGRITNDEDEEMENMGQVNTMIgilRRNMDGELENEQNRQIDRINRNGDSNATRIAAANERAHDLLK

>gi_3822409
MPTTAEPAENGAPRSELQELQMKAQYTDTELSTRLMLCEESKEAGIRTALQQDQGELRIEEGMDQINADMEKEAENLTGMEKCCGICVLPCNKSAPFKEDAWKGDNGKVNQFGFQRVHDGDGSLGPQGYYIGRITNDEDEEMENMGQVNTMNNLDMAIDMGSELENQNRQIDRINRNGDSNATRIAAANERAHDLLK

>gi_39593308
MSARRGAPGGQRHPRFYAVEPTVDINGLVLPADMSDELKGLNVIGEKTIESLESTRMLMCEESKEAGIKTLVMLDDQGQLERCEALDTIQYDKMEAEHDLKGMKCCGICLVLPWAKTEDFENSYAKWKKDDGGVISDQPRITVGDPTMPSQFGITYKTNDEDEMEDEIQQVSTMVGNLRNMAIDMSTEVSNQNQRDLRIHDKAQSNEVRVESANKRAKLNITK

>gi_32567202
MSGDDDIPELEAINLKMNTATDSLESTRMLALCEESKEAGIKTLVMLDDQGQLERCEALDTIQYDKMEAEHDLKGMKCCGICLVLPWAKTEDFENSYAKWKKDDGGVISDQPRITVGDPTMPSQFGITYKTNDEDEMEDEIQQVSTMVGNLRNMAIDMSTEVSNQNQRDLRIHDKAQSNEVRVESANKRAKLNITK
Input Formats

- FASTA format
- Download from NCBI, ExPASy, EBI, Pfam …
- Sequence names should be
 - Unique
 - 15 characters or less
 - Comprised of only A-Z,a-z,0-9 and _
 (Do not use #$%@|*!:;. or spaces)
ClustalW Output

CLUSTAL W (1.82) Multiple Sequence Alignments

Sequence format is Pearson
Sequence 1: sp_P13795 206 aa
Sequence 2: gi_31242623 213 aa
Sequence 3: gi_3822409 195 aa
Sequence 4: gi_39593308 235 aa
Sequence 5: gi_32567202 207 aa
Start of Pairwise alignments
Aligning...
Sequences (1:2) Aligned. Score: 57
Sequences (1:3) Aligned. Score: 59
Sequences (1:4) Aligned. Score: 52
Sequences (1:5) Aligned. Score: 51
Sequences (2:3) Aligned. Score: 77
Sequences (2:4) Aligned. Score: 53
Sequences (2:5) Aligned. Score: 54
Sequences (3:4) Aligned. Score: 60
Sequences (3:5) Aligned. Score: 61
Sequences (4:5) Aligned. Score: 87
Guide tree file created: [/ebi/extserv/old-work/clustalw-20040206-01234219.dnd]
Start of Multiple Alignment
There are 4 groups
Aligning...
Group 1: Sequences: 2 Score:3818
Group 2: Sequences: 3 Score:3429
Group 3: Sequences: 2 Score:4233
Group 4: Sequences: 5 Score:3386
Alignment Score 7423
CLUSTAL-Alignment file created [/ebi/extserv/old-work/clustalw-20040206-01234219.aln]
ClustalW Guide Tree

- The guide tree shows the distances between sequences obtained from the initial pairwise alignments.
- This is the order that sequences were added into the MSA.
- Guide tree is *not* a phylogenetic tree (it’s just a rough estimate of similarity), however a true phylogenetic tree can be generated after making an alignment.
Progressive Alignment

• Greedy algorithm
 • Breaks problem up into smaller problems
 • Finds best solution to each small problem
 • Combine solutions to get answer to whole problem
• Not necessarily the global answer
 • Doesn’t use all information in solving sub-problems
 • Suboptimal answers for small problems may combine to give a better overall answer
• Gaps: once created, they stay as part of alignment for rest of alignment iterations
ClustalW Alignment

CLUSTAL W (1.82) multiple sequence alignment

<table>
<thead>
<tr>
<th>sp_P13795</th>
<th>MRNLEEMQRPAQPQLADESLDRPML 33</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi_31242623</td>
<td>AAVPKTELQELQMKQQVDESLDRPML 41</td>
</tr>
<tr>
<td>gi_32248249</td>
<td>NGAPRSAPLSRQAGVVTDESRPML 40</td>
</tr>
<tr>
<td>gi_39593308</td>
<td>MSARRGAPGQQQHPRPYAVETPDINGVLVPLDMSDLEKGLNVEKDIESLDRPML 60</td>
</tr>
<tr>
<td>gi_32567202</td>
<td>LEAINLMMATDSSRML 33</td>
</tr>
<tr>
<td>sp_P13795</td>
<td>QLVEESKDAKIRTLVMLDEQGELRIEEGMDQINKDMKAEKNNLTDLGFCGLCVCPCN 93</td>
</tr>
<tr>
<td>gi_31242623</td>
<td>ALCEESVEGMRRTIVLMLDEQGELRDEEGMDQINKDMKAEKNNLSDGMKCCGIVLPCN 101</td>
</tr>
<tr>
<td>gi_32248249</td>
<td>ALCEESKEAGIRTLVLALDDQGELRDEENMDQINKDMKAEKNNLTDGMEKCGICVPWN 100</td>
</tr>
<tr>
<td>gi_39593308</td>
<td>ALCEESKEAGIRTLVLMLDEQGELRDEGALTNDQINKDMKAEKNNLTDGMEKCGICVPWN 120</td>
</tr>
<tr>
<td>gi_32567202</td>
<td>ALCEESKEAGIRTLVLMLDEQGELRDEGALTNDQINKDMKAEKNNLTDGMEKCGICVPWN 93</td>
</tr>
<tr>
<td>sp_P13795</td>
<td>KLKSSDA---YKKAWGNNQDG--VVASQPAGUVRVDEREQMAISGFFIRRVTNDAREMEMDEN 149</td>
</tr>
<tr>
<td>gi_31242623</td>
<td>KSASFK---.CGTQGNGKDNQVNNQPCRQVMDDRNLGPGQICGRITNDAREMEMDEN 158</td>
</tr>
<tr>
<td>gi_32248249</td>
<td>KSAPFKE---.TEDAWKGNDDKVNQNPQVRMDRNLGPGQICGRITNDAREMEMDEN 157</td>
</tr>
<tr>
<td>gi_39593308</td>
<td>KTDFFKEAKRKNDGGVISPDRITVGDPT-MGPQGITYKITITNDAREMEMDEN 179</td>
</tr>
<tr>
<td>gi_32567202</td>
<td>KTDFFKEKTEFAKAKKDDGGSQISRITVGDSS-MGPQGITYKITITNDAREMEMDEN 151</td>
</tr>
<tr>
<td>sp_P13795</td>
<td>LEQVSIGLIGRMLDMSGNQIDTNQIDRIMEKADSNKTIEANQRATKMLGSG 206</td>
</tr>
<tr>
<td>gi_31242623</td>
<td>MGQVNTMGNLRMLDMSGLQNNQIDFDRKNRGSNATKAAANERAHDLIK-- 213</td>
</tr>
<tr>
<td>gi_32248249</td>
<td>VGQVTMGNLRMLDMSGLQNNQIDFDRKAKNMEM--.CGTQGNGKDNQVNNQPCRQVMDDRNLGPGQICGRITNDAREMEMDEN 195</td>
</tr>
<tr>
<td>gi_39593308</td>
<td>IQQVSTMVGLMRMAIDSMTEVSNNQDNQKLDRIHDKAQSNEVRVESANKAKLITK- 235</td>
</tr>
<tr>
<td>gi_32567202</td>
<td>VQQVSTMVGLMRMAIDSMTEVSNNQDNQKLDRIHDKAQSNEVRVESANKAKLITK- 207</td>
</tr>
</tbody>
</table>
Interleaved Formats

- Most common output formats for MSAs are interleaved:
 - MSF, ASN, BLAST query-anchored formats
- All sequences are stacked up, and chopped into blocks of ~60 residues
- Easy for humans to read, but difficult to edit
- Tools for converting formats are available on the web
- EMBOSS tool for conversion (squizz_convert)
Aligned FASTA (A2M) Format

>SN29_RAT/142-196
PSSRLKEAINTSKDQESKYQASHPNLRRLHDAE---LDSVPASTV-----NTEVY-----P
KNSSL----R-----A
>SN29_HUMAN/142-197
PNNRLKEAISTSKEQEAKYQASHPNLR--------KLDDTPVPRGA---GSAMSTDA-YP
KNPHL----R-----A
>SN25_TORMA/95-148
PCNK-----LKNFEAGGAYKKVWNNQD-------G-VVASQP-ARVMD-REQMA-----M
SGGYI--RRI-TDDA
>O93578/11-59
PCNK-----MKS------GASKAWNNQD-------G-VVASQP-ARVVD-EREQMA-----I
SGGFI--RRV-TDDA
>SN25_DROME/98-149
PCNK-----SQSFK---EDDGTWKGNNDD-------GKVNNQP-QRVMD-DRNGM-----MA
QAGYI--GRI-TNDA

• **Uppercase and ‘-’ characters are alignment columns. There must be the same number of aligned characters in all sequences.**

• **Insertions that are not part of the alignment, are indicated with lower case and ‘.’ characters. These are not read (i.e. they’re for humans only)**

• **Benefits**
 • Easily machine readable
 • Readable by most programs that read FASTA format
Some Applications of MSA’s

- Phylogenetic analysis
- Pattern identification
 - DNA regulatory elements
 - Protein domains
- Accurate structure prediction
 - RNA secondary structure
 - Protein structure prediction
- SNP analyses – synonymous/non-synonymous/missense
- Design of degenerate PCR primers
Graphical - Jalview

- Postscript, PDF, HTML
- Looks pretty and very visually informative
- Completely useless for further computational analysis.

DO NOT SAVE GRAPHICS AS YOUR ONLY OUTPUT

- Jalview -- Java alignment editor (http://www.jalview.org)
 - Available as an online applet or as an application
 - Makes nice pictures and allow interactive editing
Sequence Logos

- Logos are another useful visualization of alignments that allow conserved positions to be easily picked out.
- Multiple tools available on the web or can be downloaded:
 - http://weblogo.berkeley.edu
Tcoffee

- Makes a library of pair-wise global and several local alignments
- Tries to find a multiple alignment that has best consensus with all alignments in the library.
- Still a progressive algorithm
- Slower, but usually a bit better than ClustalW
Other Uses of MSA Servers

- ClustalW can refine an alignment
 - If sequences are aligned when submitted, this info is used.

- Tcoffee can
 - Combine alignments
 - Evaluate alignment quality
 - Use structural information if available
Criteria for a Good MSA

• Most methods align proteins on the basis of sequence similarity, but what we really want to know is:
 • Evolutionary similarity
 • Functional similarity
 • Structural similarity

• If the sequences are closely related, these similarities are all equivalent. As sequences become more divergent, these similarities may not be equivalent.

• There isn’t necessarily one ‘correct’ alignment for a family. MSA doesn’t necessarily reflect a true structural or functional alignment.
Which Sequences?

• Don’t include too many
 • Problems are VERY slow for many sequences
 • Start with 10-15 or so.

• Closely related sequences are easy to align, but less informative. The converse is true for more distantly related sequences
 • No identical sequences
 • Each sequence 30-70% identical with at least half of the other sequences.
Strategies

• Visually inspect alignment and try eliminating sequences that seem problematic.

• Avoid sequences with long insertions and/or terminal extensions

• “Orphan” sequences (highly divergent members of a family) usually don’t disrupt alignment because they’re the last to be aligned.