Antibodies and the adaptive immune system
General terms to know

• Pathogen
 – Germ = disease causing agent
 – Examples: virus, bacterium, parasite, fungus, prion

• Antigen
 – Antibody generator = substances that elicit an antibody immune response
 – Examples: bacterial LPS, bacterial flagella, virus surface protein, parasite glycans, protein toxins

• Antibody
 – Immunoglobulin = a specific Y-shaped protein produced by B-cells that binds to a specific antigen
 – Examples: IgG, IgA, IgM, IgD, IgM
General terms to know
How does the human body react to an infection? --> Immune system

Innate Immunity
- Epithelial barriers
- Phagocytes
- Dendritic cells
- Plasma proteins
- NK cells

Adaptive Immunity
- Naive B cell
- Naive T cell
- Antibodies
- Effector T cells

Short term response
- i.e. fever, inflammation

Developed recognition of pathogen
- i.e. lifelong immunity
How does the human body react to a virus infection? --> Immune system

Innate Immunity
- Castle
- Moat
- Alligators = macrophages

Adaptive Immunity
- Archers
- Cannonneers
- Swordsmen

Developed from birth
Always ready, Non-learner
Non-specific

Developed from experience
Adaptor, Learner, Improver
Specific for virus/pathogen
How does the human body react to an infection? --> Immune system

Innate Immunity
- Epithelial barriers
- Phagocytes
- Dendritic cells
- Plasma proteins
- NK cells

Adaptive Immunity
- Naive B cell
- Antibodies
- Naive T cell
- Effector T cells

Short term response i.e. fever, inflammation
Developed recognition of pathogen i.e. lifelong immunity
Adaptive immunity: B cells and T cells

- T and B cells develop from stem cells in bone marrow

- **Humoral immunity**
 - **B cells** mature in the bone marrow

- **Cellular immunity**
 - Due to T cells
 - **T cells** mature in the thymus
T cells:

- Recognize MHC proteins on the surface of cells that are presenting (bound to) fragment of a foreign antigen
- Activated cytotoxic T cells kill infected cell
- Activated helper T cells secrete cytokines (small signaling proteins) that help to activate T cells and B cells
Each B cell produces a specific antibody

- Gene rearrangement (VDJ or VJ recombination) of both heavy and light chain antibody genes
- Allows for $>10^{12}$ different possible antibody sequences
- Membrane-bound antibody on surface of B cells
- After B cell is stimulated, secreted form of antibody made
Each B cell produces a specific antibody by VDJ and VJ recombination

- Genetic recombination of antibody genes in early stage of B cell maturation
- Mediated by a number of recombination enzymes
- Both heavy and light chain genes undergo recombination
The role of antigen becomes critical when it interacts with and activates mature, antigenically committed T and B lymphocytes, bringing about expansion of the population of cells with a given antigenic specificity. In this process of clonal selection, an antigen binds to a particular T or B cell and stimulates it to divide repeatedly into a clone of cells with the same antigenic specificity as the original parent cell (Fig 1-10).

Clonal selection provides a framework for understanding the specificity and self/nonself recognition that is characteristic of adaptive immunity. Specificity is shown because only lymphocytes whose receptors are specific for a given epitope on an antigen will be clonally expanded and thus mobilized for an immune response. Self/nonself discrimination is accomplished by the elimination, during development, of lymphocytes bearing self-reactive receptors or by the functional suppression of these cells in adults.

Immunologic memory also is a consequence of clonal selection. During clonal selection, the number of lymphocytes specific for a given antigen is greatly amplified. Moreover, many of these lymphocytes, referred to as memory cells, appear to have a longer life span than the naive lymphocytes from which they arise. The initial encounter of a naive immunocompetent lymphocyte with an antigen induces a
What do antibodies do?

- **Agglutination**: Enhances phagocytosis and reduces the number of infectious units to be dealt with.
- **Opsonization**: Coating antigen with antibody enhances phagocytosis.
- **Neutralization**: Blocks adhesion of bacteria and viruses to mucosa.
- **Activation of complement**: Cell lysis
- **Activation of complement**: Complement
- **Inflammation**: Disruption of cell by complement/reactive protein attracts phagocytic and other defensive immune system cells.
- **Enhance killing of pathogen by cytotoxic proteins**: Macrophage

Enhance phagocytosis and degradation of pathogen

Neutralize pathogen

Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.
Antibody Structure

Variable region
Determines specificity and affinity for antigen

Constant region
Determines antibody isotype, which can affect biological properties, functional locations,
Antibody Isotypes

<table>
<thead>
<tr>
<th>Isotype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgA</td>
<td>Dimeric antibody found in mucosal areas (gut, lungs, genital tract, saliva, tears, breast milk) and prevents pathogen colonization.</td>
</tr>
<tr>
<td>IgD</td>
<td>Antigen receptors on B cells.</td>
</tr>
<tr>
<td>IgE</td>
<td>Binds allergens and triggers histamine release.</td>
</tr>
<tr>
<td>IgG</td>
<td>Majority of antibody-based immunity against pathogens. Only antibody that can cross placenta to protect fetus.</td>
</tr>
<tr>
<td>IgM</td>
<td>Pentameric antibody with high avidity used to eliminate pathogens before there is sufficient IgG.</td>
</tr>
</tbody>
</table>

![Diagram of antibody structures](image)
Antibody Structure

Fc = Fragment constant
Fab = Fragment antigen binding
Fv = Fragment variable = part of Fab
One antibody has two identical antigen binding sites, each composed of six CDR loops (CDR = complementarity determining region)
Quick review – antibody structure
Immunity

• **Active Immunity**: antibodies developed as a result of antigenic stimulus

• **Passive Immunity**: antibodies transmitted passively
Active Immunity

- **Natural active immunity:** resistance to a pathogen developed during natural infection

- **Artificial active immunity:** resistance to a pathogen developed during vaccination
 - Live attenuated vaccines
 - Inactivated or subunit vaccines

Rubella virus infection (German measles)
Vaccines

- Vaccines train the adaptive immune response: long-term protective immunity against future infections
- Vaccines contain antigen(s) from a specific pathogen
- Vaccines elicit antibody production in humans
Brief History of Vaccines

- 1720, Istanbul: injection of pus from smallpox victims into skin = variolation (1 in 50 chance of dying)

- 1796, England: Edward Jenner, MD, heard claims of local dairymaids that infection with cowpox made them immune to smallpox. Dr. Jenner tested theory on 8-year old boy – it worked! Cow = vacca --> vaccination

- 1885, Louis Pasteur: dried, crushed spinal cords from dogs that had died from rabies (virus), injected into healthy dogs, did not become infected; 9-year old boy bitten by rabid dog was given injection and survived

- 1952, Jonas Salk: three strains of poliovirus (grown in cell culture) combined, inactivated with formalin (formaldehyde)
Childhood Vaccines

<table>
<thead>
<tr>
<th>Vaccines</th>
<th>Birth</th>
<th>1 mo</th>
<th>2 mos</th>
<th>4 mos</th>
<th>6 mos</th>
<th>9 mos</th>
<th>12 mos</th>
<th>15 mos</th>
<th>18 mos</th>
<th>19-23 mos</th>
<th>2-3 yrs</th>
<th>4-6 yrs</th>
<th>7-10 yrs</th>
<th>11-12 yrs</th>
<th>13-15 yrs</th>
<th>16-18 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis B (HepB)</td>
<td></td>
</tr>
<tr>
<td>Rotavirus (RV)</td>
<td></td>
</tr>
<tr>
<td>RV-1 (2-dose series); RV-5 (3-dose series)</td>
<td></td>
</tr>
<tr>
<td>Diphtheria, tetanus, & acellular pertussis (DTaP: <7 yrs)</td>
<td></td>
</tr>
<tr>
<td>Tetanus, diphtheria, & acellular pertussis (Tdap: ≥7 yrs)</td>
<td></td>
</tr>
<tr>
<td>Haemophilus influenzae type b (Hib)</td>
<td></td>
</tr>
<tr>
<td>Pneumococcal conjugate (PCV13)</td>
<td></td>
</tr>
<tr>
<td>Pneumococcal polysaccharide (PPSV23)</td>
<td></td>
</tr>
<tr>
<td>Inactivated poliovirus (IPV) (<18 years)</td>
<td></td>
</tr>
<tr>
<td>Influenza (IV, LAIV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Annual vaccination (IV only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 doses for some: see footnote B</td>
<td></td>
</tr>
<tr>
<td>Measles, mumps, rubella (MMR)</td>
<td></td>
</tr>
<tr>
<td>Varicella (VAR)</td>
<td></td>
</tr>
<tr>
<td>Hepatitis A (HepA)</td>
<td></td>
</tr>
<tr>
<td>Human papillomavirus (HPV2: females only; HPV4: males and females)</td>
<td></td>
</tr>
<tr>
<td>Meningococcal (Hib-MenCY ≥ 6 wks; MCV4-Dos9 mos; MCV4-CRM ≥ 2 yrs)</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Range of recommended ages for all children
- Range of recommended ages for catch-up immunization
- Range of recommended ages for certain high-risk groups
- Range of recommended ages during which catch-up is encouraged and for certain high-risk groups
- Not routinely recommended
“The easy infectious disease problems and vaccines have been solved...Now we’re left with the more difficult ones...Developing vaccines against these will require significant, new scientific insight.” -Dan Granoff, M.D., CHORI.

Spoiler alert: two upcoming classes on engineering protein vaccine antigens
Passive Immunity

- **Natural passive immunity**: maternal antibodies in colostrum/milk transferred from mother to baby
 - First ~6 months of baby’s life
 - Immunization of mothers improves passive immunity in infants

- **Artificial passive immunity**: administration of therapeutic antibodies
 - Antiserum
 - Gamma globulin (purified IgG)
 - Recombinant antibodies or antibody fragments
 - Antibodies last weeks-months
Therapeutic Antibodies

• Polyclonal: collection of many different antibodies from serum

• Monoclonal: single isolated antibody
Artificial passive immunity: ZMapp

• Mixture of three antibodies that neutralize Ebola virus
 (Neutralize = block virus from infecting cell)

• Originally isolated as mouse monoclonal antibodies

• Engineered to make chimeric human-mouse antibodies; recombinant antibodies produced in tobacco plants
Artificial passive immunity: RhoGAM

- Human blood can be Rh positive or Rh negative

- Rh factor = Rhesus factor = protein on surface of red blood cells (membrane transport protein with unknown physiological role)

- European decent: 15% Rh negative, 85% Rh positive
- African, native american, asian decent: 1% Rh negative, 99% Rh positive

- When Rh+ father and Rh- mother become pregnant, possibility of developing hemolytic disease of the newborn (HDN)
Artificial passive immunity: RhoGAM

1. Rh+ father.
2. Rh- mother carrying her first Rh+ fetus. Rh antigens from the developing fetus can enter the mother’s blood during delivery.
3. In response to the fetal Rh antigens, the mother will produce anti-Rh antibodies.
4. If the woman becomes pregnant with another Rh+ fetus, her anti-Rh antibodies will cross the placenta and damage fetal red blood cells.

• When Rh+ father and Rh- mother become pregnant, baby may have Rh+ blood

• Mother’s exposure to small amounts of baby’s Rh+ blood (usually during birth) causes Rh- mother to develop antibodies against Rh factor of baby’s blood

• If 2nd and subsequent pregnancies are with Rh+ babies, hemolytic disease of the newborn (HDN) occurs: mothers anti-Rh antibodies attack fetus blood: severe anemia, liver and heart damage: used to be responsible for death of 1 in 2,200 babies
Artificial passive immunity: RhoGAM

- RhoGAM = anti-Rh-factor antibodies derived from human donor blood plasma
- Antibodies bind Rh+ fetus blood cells and prevent mother from developing antibodies to Rh-factor
- Decreased death of 1 in 2,200 babies down to 1 in 22,000
Self vs. non-self immunity

When antibodies recognize self:

– BAD: autoimmune diseases
– GOOD: anticancer antibodies
Thursday’s guest lecture:
Dr. David Alexander

• How good antibodies are found/identified:
 – Mice
 – Humans
 – Phage/yeast display

• How recombinant antibodies are made

• Recombinant antibody fragments

• Testing antibodies
Scott Dylla, StemCentRx
"Discovery & Development of an Antibody-Drug Conjugate that Effectively Targets Triple-Negative Breast and Ovarian Tumor-Initiating Cells to Result in Sustained Tumor Regressions"

Thursday, May 21, 2015, 12:00 PM to 1:00 PM
Biomed 200
Hosted by Camilla Forsberg
https://www.soe.ucsc.edu/events/event/3841