Substitution Matrices

David Bernick
Motivation

• we are interested in establishing the likelihood on the hypothesis that two observations in each of two molecules has descended from a common ancestral character.

• we can not, typically, observe the ancestral character

• we instead assume that the characters provide the same “purpose” and ask how similar these two characters are to each other
Mutational Model

• Mutations that produce structural change should be less probable than those that do not
• Mutable amino acids: Asn, Asp, Glu, Ser
• Least mutable: Cys, Trp
Mutational Model - 2

- Model should capture frequency of $AA_i \rightarrow AA_j$, $P(Aa_{ij})$
- Model should consider mutational time – t
 – Molecular clock
- Model should be a comparison of 2 models
 – M substitutions in evolutionarily related sequences
 – R “alignments” made by chance
 – Given by the frequency of occurrence in all proteins
- Should model be reversible?
 – $P(Aa_{ij} \mid M,t) = (PAA_{ji} \mid M,t)$
Scoring Models

• Our scores will compare 2 models:
 – Probability of 2 AA deriving from a common ancestor
 • $M = P(\text{related} \mid \text{AA}_i, \text{AA}_j)$
 – Probability of 2 AA being aligned by chance
 • $R = P(\text{random} \mid \text{AA}_i, \text{AA}_j)$
 – We make a log-odds score
 • $s(i,j) = \log_2(M/R)$
 – We can then scale and round the scores by some convenient factor (to make nice integers)
	A	R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	V	B	Z	X	*	
5	-2	-1	-2	-1	-1	0	-2	-1	-2	-1	-1	-3	-1	1	0	-3	-2	0	-2	-1	-1	-5			
-2	7	-1	-2	-4	1	0	-3	0	-4	-3	3	-2	-3	-3	-1	-1	-3	-1	-3	1	0	-1	-5		
-1	-1	7	2	-2	0	0	0	1	-3	-4	0	-2	-4	-2	1	0	-4	-2	-3	4	0	-1	-5		
-2	-2	2	8	-4	0	2	-1	-1	-4	-4	-1	-4	-5	-1	0	-1	-5	-3	4	5	1	-1	-5		
-1	-4	-2	-4	13	-3	-3	-3	-3	-2	-2	-2	-2	-4	-1	-1	-5	-3	-1	-3	-3	-2	-5			
-1	1	0	0	-3	7	2	-2	1	-3	-2	2	0	-4	-1	0	-1	-1	-1	-3	0	4	-1	-5		
-1	0	0	2	-3	2	6	-3	0	-4	-3	1	-2	-3	-1	-1	-3	-2	-3	1	5	1	-5			
0	-3	0	-1	-3	-2	-3	8	-2	-4	-4	-2	-3	-4	-2	0	-2	-3	-3	-4	-1	-2	-5			
-2	0	1	-1	-3	1	0	-2	10	-4	-3	0	-1	-1	-2	-1	-2	-3	2	-4	0	0	-1	-5		
-1	-4	-3	-4	-2	-3	-4	-4	-4	5	2	-3	2	0	-3	-3	-1	-3	-1	4	-4	-3	-1	-5		
-2	-3	-4	-4	-2	-2	-3	-4	-3	2	5	-3	3	1	-4	-3	-1	-2	-1	1	-4	-3	-1	-5		
-1	3	0	1	-3	2	1	2	0	-3	-3	6	-2	-4	-1	0	-1	-3	-2	-3	0	1	-1	-5		
-1	-2	-2	-4	-2	0	-2	-3	-1	2	3	-2	7	0	-3	-2	-1	1	0	1	-3	-1	-1	-5		
-3	-3	-4	-5	-2	-4	-3	-4	-1	0	1	-4	0	8	-4	-3	-2	1	4	-1	-4	-4	-2	-5		
-1	-3	-2	-1	-4	-1	-1	-2	-2	-3	-4	-1	-3	-4	10	-1	-1	-4	-3	-3	-2	-1	-2	-5		
1	1	1	0	-1	0	1	0	-1	-3	-3	0	-2	-3	-1	5	2	-4	-2	-2	0	0	-1	-5		
0	1	0	0	-1	-1	-1	-2	-2	-1	-1	-1	-2	-1	2	5	3	-2	0	0	-1	0	-5			
-3	-3	-4	-5	-5	-5	-1	-3	-3	-3	-3	-2	-3	-1	1	-4	-4	-3	15	2	-3	-5	-2	-3	-5	
-2	-1	-2	-3	-3	-1	-2	-3	2	-1	-1	-2	0	4	-3	-2	-2	2	8	-1	-3	-2	-1	-5		
0	3	-3	-4	-1	-3	-3	-4	-4	4	1	-3	1	-1	-3	-2	0	-3	-1	5	-4	-3	-1	-5		
-2	-1	4	5	-3	0	1	-1	0	-4	-4	0	-3	-4	-2	0	0	-5	-3	-4	5	2	-1	-5		
-1	0	0	1	-3	4	5	-2	0	-3	-3	1	-1	-4	-1	0	-1	-2	-2	-3	2	5	-1	-5		
-1	-1	-1	-1	-2	-1	-1	-2	-1	-1	-1	-2	-2	-1	0	-3	-1	-1	-1	-1	-1	-1	-5			
-5	-5	5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	5	1			
PAM matrices

• Point Accepted Mutations - Margaret Dayhoff

• Construct an $N \times N$ matrix where each column represents the observed transition frequency of substitution for a given AA to each of the others.

• She observed 1572 exchanges in 71 closely related protein families.

• All columns in the Mutation matrix sum to 1.

• She defined 1 PAM unit to yield 1 observed mutation / 100 AA.

• PAM is then a unit of time
PAM Matrices - 2

• Multiple mutations can occur at a single location.

• If sequences are closely related this is less probable
 – Negligible effect at 1 PAM
 – Substantial effect at 250 PAMs
PAM Matrices - 3

• Calculate $P(B|A) = \frac{c(AB)}{c(A^*)}$
 – Only mutations are counted ($A \neq B$)
 – When counting mutations
 • $c(AB)=c(BA)$ (we count both)
 – Scale all $P(B|A)$ such that:
 \[
 \sum_a \sum_b P(A)P(B)P(B|A) = 0.01
 \]

 \[\text{where: } P(A) = \frac{\sum c(A^*)}{N}\]

 • Using scaling factor: σ
 – Rescale all off diagonals $P(B|A)$ using σ
 – Set $P(A|A) = 1-\sigma$
 – This is the $S(1)$ mutation matrix (not sub. Matrix)
PAM Matrices – 4

• We can now compute PAM Matrices for longer PAM times, by:

\[S(2) = S(1)^2 \]
\[S(n) = S(1)^n \]

• Entries in \(S(t) \) are then converted to scores by:

\[s(A, B | t) = \log_2 \frac{P(B | A, t)}{P(B)} \]
PAM Matrices – 5

• and finally..
 – any score matrix can be rescaled with a constant
• PAM250 is scaled to “third bits”
PAM Matrices - 6

• PAM Matrices are compelling, but...
 – $S(1)$ models short timeframe substitutions
 • Dominated by single nucleotide changes
 – $S(250)$ does not capture more remote timeframe substitutions
BLOSUM Matrices

• Henikoff and Henikoff
• Select aligned blocks from Protein families
 – BLOCKS are aligned, ungapped regions or related proteins
• Cluster all sequences that are at or above some threshold in %identity (L)
• Compute Aligned Pair counts between clusters, weighting each count by cluster size
 – $1/n_1 n_2$
 – this removes bias from oversampled sequences
• We now normalize over each column to produce $P(AA_{ij} | AA_i, M)$.
 – transition probabilities from some AA to all possibilities

• Compare this model again R (random model) as a likelihood ratio

• Convert to log space

• Scale
Example:
 cluster sequences above L% ID into their own cluster
 count pairwise alignments(assume each in sep. cluster)
 AA (3)
 AD (3)
 AG (3)
 DG (1)
Compute conditionals:
 P(A|A)=3/9
 P(D|A)=3/9
 P(G|A)=3/9

...
Note that Matrix is symmetric
Compute s(A,D) = log2(P(D|A)/P(D)) = log2((3/9) / (4/10))= -.26
 s(A,A) = log2(P(A|A)/P(A)) = log2((3/9) / (9/10)) = -1.4