Caches
Processor Performance

• Simple Measure: Millions of instructions per second
 – It takes 1 clock cycle to execute each of 5 stages of executing an instruction (IF, ID, EX, MEM, WB).
 – Your clock is 1 GigaHertz (1 ns clock)
 – 1 billion cycles/sec (divide) 5 cycles/instruction =
 – 200 Million instructions per Second = 200 MIPS

• But your memory requires 40 nanoseconds to access?
 – 1 billion cycles/sec (divide) (5+40) cycles/instruction =
 – 13.3 Millions instructions per Second = 22.2 MIPS
Problem: memory is slower than processor

Fast memory is expensive

Fast memory is small
Memory cost several years ago

Technology:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SRAM</td>
<td>0.5-2.5 ns</td>
<td>$2000-$5000</td>
</tr>
<tr>
<td>DRAM</td>
<td>50-70 ns</td>
<td>$20-$75</td>
</tr>
<tr>
<td>Mag. Disk</td>
<td>510^6 – 2010^6 ns</td>
<td>$0.2-$2</td>
</tr>
</tbody>
</table>

Even if you have the money, size of fast memory is limited by physics.
Solution: memory hierarchy

- CPU
- Cache
- Main Mem.
- Disk

- 1cc
- 20 to 100cc
- 10^4cc
Where is the cache?
Data that the CPU is likely to need in the future is stored in the cache.
Which data is “likely to be used in the future”?

- **Locality in Time:** If the CPU needed it recently, it is likely to need it again.
 - Loops
 - Variables
 - Top of the Stack

- **Locality in Space:** If the CPU needed something nearby, it is likely to need it again.
 - Subroutines
 - Arrays
Hits and Misses

Processor

hit ↓

Cache

miss

Main Memory

Hit time: memory access time when the data is in the cache.

Miss penalty: additional access time when there is a miss.

Hit rate: fraction of memory accesses found in cache

Miss rate: 1 - hit rate
Processor Performance

- It takes 1 clock cycle to execute each of 5 stages of executing an instruction (IF, ID, EX, MEM, WB) and a 1 GigaHertz (1 ns period) clock

- No cache
 - 1 billion cycles/sec (divide) (5+40) cycles/instruction =
 - 13.3 million instructions per Second = 22.2 MIPS

- 100% hit rate (impossible)
 - 1 billion cycles/sec (divide) 5 cycles/instruction =
 - 200 million instructions per Second = 200 MIPS

- 95% hit rate (not unreasonable)
 - 5 c/instruction * .95 + 45 c/instruction * .05 = (4.75 + 2.25)c/instruction = 7 cycles/instruct on average.
 - 10^9 c/s / 7 c/instruct. = 143 MIPS
 - 143/22.2 = greater than 6X speedup
Example cache system

- Bottom of line Apple MacBook Pro, 2.3 GHz Intel i5 Dual Core
- On chip
 - L1 cache: 32 KB instruction and 32 KB data
 - L2 cache: 256 KB
 - L3 cache: 3072 KB