Instructor: Alexandre Brandwajn
Office: UCSC Campus, Engineering-2 223
E-mail: alexb@soe.ucsc.edu
Phone: 831-459 4023
Office hours: Tu 10 am to 11:45 am UCSC Main Campus & by appointment
TA: Elinor Velasquez (senior TA), e-mail: elinor@soe.ucsc.edu
Mohsen Kishkani, e-mail: mohsen@soe.ucsc.edu
Sections/TA Office hours: to be announced

Grade policy: 65% examinations, 35% quizzes; failing grade: below 50% in either component

Planned: 3 examinations (*no final*), frequent quizzes on class material, homework assignments (ungraded)

Projected course outline

I. Introductory Notions
- probabilistic phenomena, relationship to experiments, intuitive notions
- event, random variable
- statistics, inference from limited data and outcomes of repeated experiments
- random experiment, sample space, sample points
- probability measures, probability axioms

II. Conditional Probability
- motivation, law of total probability, independence of events
- Bayes’ theorem
- application to reliability

III. Random Variables & Transforms
- distribution function, pmf, pdf (discrete/continuous random variables)
- characterization, moments
- jointly distributed random variables, covariance, independence
- generation of pseudo-random variates for simulation experiments
- sums of independent random variables, convolution
- conditional moments
- transform methods, moment generating function, generating function
- sums of independent random variables
- general inequalities and applications, bounds, application to design assessment
- relative frequency and probability, law of large numbers, precision of measurements

IV. Selected Probability Distributions & Applications, Statistics
- discrete, continuous
- negative exponential random variable
- Gaussian random variable, Central Limit Theorem, precision of repeated measurements
- applications in statistics, performance evaluation and reliability

V. Elements of Stochastic Processes
- basic notions, examples
- counting, Poisson process
- birth and death process, equilibrium, steady state
- Markov chains, state classification, ergodicity, applications

The projected course outline is only an initial plan. The actual number, order and extent of subjects covered may vary depending on a number of factors including, but not limited to, class progress. Cheating and dishonesty are not considered acceptable.