4. Let \(V \) be a random variable defined by
\[
V = \begin{cases}
1 & \text{with probability } p \\
0 & \text{with probability } 1 - p.
\end{cases}
\]
Then,
\[
E(X) = E(V) = \sum_{v=0}^{1} v \cdot P(V = v) = 1 \cdot P(V = 1) + 0 \cdot P(V = 0) = E(V) = P(V = 1).
\]

5. The probability that a page should be retried is
\[
p = 1 - e^{-\lambda T} = 1 - e^{-\lambda T / 2} = e^{\lambda T / 2}.
\]

6. Note that
\[
M_{X}(\theta) = E(e^{\theta X}) = \sum_{x=n}^{\infty} e^{\theta x} P(X = x) = \sum_{x=n}^{\infty} e^{\theta x} \lambda^{x} e^{-\lambda} / x! = \frac{\lambda}{\lambda - \theta}.
\]

7. The probability density function of \(X \) is given by
\[
f(x) = \begin{cases}
\frac{\theta}{\lambda} e^{-\lambda x} & 0 < x < \lambda \\
0 & \text{otherwise}.
\end{cases}
\]

8. Since \(X + Y \) is in Poisson with parameter \(\lambda + \mu \) and \(X \) and \(Z \) in Poisson with parameter \(\lambda + \mu + \nu \), we have that
\[
P(Y \mid X + Y = z) = \frac{P(Y = y, X + Y = z)}{P(X + Y = z)} = \frac{e^{-\lambda - \mu - \nu} (\lambda + \mu + \nu)^{z-y}}{(z-y)!}.
\]

9. Let \(X \) be the remaining calling time of the person in the booth. Let \(Y \) be the calling time of the person before Mr. Wallace. By the memoryless property of exponential, \(X \) is exponential with parameter \(1/\lambda \). Since \(X \) is also exponential with parameter \(1/\lambda \), assuming that \(X \) and \(Y \) are independent, the waiting time of Mr. Wallace, \(X + Y \) is gamma with parameters \(1/\lambda \) and \(1/\lambda \). Therefore,
\[
P(X + Y \geq x) = \int_{x}^{\infty} \frac{\lambda e^{-\lambda x}}{x^{2}} dx = \frac{\lambda}{x^{2}} = 0.558.
\]