Neural Networks

ANN for Artificial Neural Networks
Neural Networks

• Feed forward networks of (usually) sigmoid functions (continuous approximation of LTUs)

• Powerful models - can represent any boolean function (with exponentially many hidden nodes)

• Learn by gradient descent
 – But many local minima

• *Not* like an artificial brain: brain much more connected, many more nodes, much more parallel, spike trains, etc.
Example

z_i is output of node i

$W_{j,i}$ is weight from i to j
• Architecture usually fixed (nodes, functions at
 nodes, and topology)
• Weights $w_{j,i}$ learned from data
• To compute value, put attributes at input
 nodes, each node j computes an
 activation $a_j = \sum_i w_{j,i} z_i$ (weighted sum of
 outputs of nodes feeding into j)
• Node j output z_j is some $f_j(a_j)$
 – but for input nodes, output is corresponding feature
• Common $f(a_j)$ are tanh and logistic sigmoid
Node j

$$z_j = f(a_j)$$

$$a_j = \sum_i w_{j,i} \cdot z_i + w_{j,0} b$$

Bias b
(fixed to 1)

z_i values coming in

Output z_j to other nodes

$z_j = f(a_j)$

$f(a) = \tanh(a)$

$f(a) = 1/(1+\exp(-a))$
Net for XOR

Hidden nodes learn useful subpatterns

Biases important

Inputs x_i are 0/1; $f(a) = \text{logistic sigmoid}$
Neural Net (classic) Successes

• Pronunciation - mapping text to phonemes (NETtalk, 1987) used 7 character window

• Handwritten character recognition (LeCun 1989) three hidden layers sparsely connected, compiled into silicon and used for mail sorting

• Driving: ALVINN (Pomerleau, 1993) maps from video to steering direction, actually driven on highways.
ANN error surface

\[E(w) \]

[Diagram showing a 3D error surface with points \(w_A \), \(w_B \), \(w_C \) and the gradient \(\nabla E \).]
Backpropagation used to learn weights

- For new example \((x,t)\) compute error \((output - t)^2\)
- Want \(\frac{\partial \text{error}}{\partial w}\) for each weight and bias in network, update each \(w := w - \eta \frac{\partial \text{error}}{\partial w}\)
- Useful quantities: \(\delta_j = \frac{\partial \text{error}}{\partial a_j}\)
- \(\frac{\partial \text{error}}{\partial w_{j,i}} = \delta_j z_i\) (already have \(z_i\))
- If \(j\) is output node, \(\delta_j = 2 f'(a_j) (z_j-t)\) (for square loss)
- Otherwise, \(\delta_j = f'(a_j) \sum_k \delta_k w_{k,j}\) (sum over nodes using \(z_j\))
 - Need \(\delta_k\) for nodes \(k\) using \(z_i\) : backpropagate \(\delta\) vals

See backprop handout
Backpropagation Algorithm

1. Forward pass: compute all a_i and z_i values
2. Compute errors for output node(s)
3. Compute δ values for each node in a backwards pass through net
4. update w’s based on gradient (computed from activations and δ’s)
Backpropagation notes:

- Evaluate forward, backpropagate to get gradients
- Computationally efficient, but many iterations through data
- Can do either on-line / stochastic GD or batch updates (SGD more common)
- Can have multiple output nodes, and output nodes can be linear (instead of sigmoid)
- Complicated surface (many local minimums): do multiple runs, pick best
Many fancier methods:

• E.g. 2nd order methods – calculate or approximate the Hessian

• Here just backpropagation with simple gradient descent
Initialization issues

Saturation (a_j big) is bad because sigmoid flat and gradient small

Solution: make initial weights small

Symmetry must be broken (so hidden nodes learn different things)

Solution: use random initialization

Finding good topology

Solution: It is a black art, “brain surgery” techniques proposed
Improving Convergence

- Momentum

\[\Delta w_i^t = -\eta \frac{\partial E^t}{\partial w_i} + \alpha \Delta w_i^{t-1} \]

- Adaptive learning rate

\[\Delta \eta = \begin{cases}
 +c & \text{if } E^{t+\tau} < E^t \\
 -b \eta & \text{otherwise}
\end{cases} \]
Overfitting/training (Alpaydin)

Number of weights: $H(d+1)+(H+1)\times \#outputs$
Polynomial Data
Test error vs # hidden nodes

![Graph showing test error vs number of hidden nodes]
Sinusoidal data set
train and test error vs. # epochs
ANN notes:

- **MultiClass:**
 - Use one output z_c per class c in C
 - Combine with softmax: $P(class \mid X) = \frac{\exp(z_{class})}{\sum_c \exp(z_c)}$

- 1 hidden layer is a universal approximator, but multiple layers may give simpler nets

- Weight sharing and weight regularization

- Evolutionary methods?
Dimensionality Reduction
(Deep Learning)
Neural Net Summary

- Model: flexible, very flexible over all topologies, but must pick topology
- Data: Numeric
- Interpretable? No (but some pretty pictures)
- Missing values? No
- Noise/outliers? Very good
- Irrelevant features? Bad
- Comp. efficiency? Fair (but local minima)