1. When $w_i = w_j = 0$, Δw is always 0, and any state is a steady one.
 When $w_i > w_j = 0$, Δw is always positive, except for $S_0 = 1$. So $S_0 = 1$ is the steady state.
 When $w_i < w_j = 0$, Δw is always negative except for $S_0 = 0$. So $S_0 = 0$ is the steady state.

2. A t_1 step followed by a t_2 step so,

\[
S_i(t + t_1 + t_2) = \frac{S_i(t) w_i^{t_1} w_j^{t_2}}{\sum_j S_j(t) w_j^{t_1}} \frac{S_j(t) w_i^{t_1} w_j^{t_2}}{\sum_j S_j(t) w_j^{t_1}} \frac{S_i(t) w_i^{t_1} w_j^{t_2}}{\sum_j S_j(t) w_j^{t_1}} = \frac{S_i(t) w_i^{t_1} w_j^{t_2}}{\sum_j S_j(t) w_j^{t_1}} = S_i(t + t_1 + t_2)
\]

3.
\[
\ln \frac{S_i(t)}{S_j(t)} = \ln \frac{S_i(0) e^{t(W_i - W_j)}}{S_j(0) e^{t(W_i - W_j)}} = \ln \frac{S_i(0)}{S_j(0)} + t(W_i - W_j)
\]

\[
\ln \frac{S_i(t-1)}{S_j(t-1)} = \ln \frac{S_i(0)}{S_j(0)} + (t-1)(W_i - W_j)
\]

\[
\ln \frac{S_i(t)}{S_j(t)} - \ln \frac{S_i(t-1)}{S_j(t-1)} < W_i - W_j
\]

4.
\[
\ln \frac{S_i(t)}{S_i(t-1)} = \ln \frac{S_i(t+1) e^{W_i}}{S_i(t) \sum_j S_j(t+1) e^{W_j}} = W_i - \left(\ln \sum_j e^{W_j S_j(t+1)} \right)
\]