CMPS 277 – Principles of Database Systems

https://courses.soe.ucsc.edu/courses/cmps277/Fall11/01

Lecture #16
Equality-Generating Dependencies

Definition: An equality-generating dependency (egd) is a formula of relational calculus of the form:

\[\forall x_1,\ldots,x_n(\varphi(x_1,\ldots,x_n) \rightarrow x_i = x_j), \]

where \(\varphi(x_1,\ldots,x_n) \) is a conjunction of atomic formulas (i.e., \(\varphi \) is a conjunctive query)

Examples:

- \[\forall x_1,x_2,x_3(R(x_1,x_2) \land P(x_2,x_3) \land T(x_2) \rightarrow x_2 = x_3) \]
 - This is an egd, but not a FD.

- \[\forall x_1,x_2,x_3(R(x_1,x_2) \land R(x_1,x_3) \rightarrow x_2 = x_3) \]
 - This is both an egd and a FD, namely \(A_1 \rightarrow A_2 \).
Tuple-Generating Dependencies

Definition: A tuple-generating dependency (tgd) is a formula of relational calculus of the form:

$$\forall x_1,\ldots,x_n (\varphi(x_1,\ldots,x_n) \rightarrow \exists y_1,\ldots,y_m \psi(x'_1,\ldots,x'_k, y_1,\ldots,y_m)),$$

where

- $\varphi(x_1,\ldots,x_n)$ and $\psi(x'_1,\ldots,x'_k, y_1,\ldots,y_m)$ are conjunctions of atomic formulas
- The variables x'_1,\ldots,x'_k are among the variables x_1,\ldots,x_n.

Note: In effect, a tuple-generating dependency asserts that one conjunctive query (namely, the one defined by $\varphi(x_1,\ldots,x_n)$) is contained in another conjunctive query (namely, the one defined by $\exists y_1,\ldots,y_m \psi(x'_1,\ldots,x'_k, y_1,\ldots,y_m)$).
Tuple-Generating Dependencies

Examples:

- Every inclusion dependency is a tuple-generating dependency.

- \(\forall x,y,z \ (E(x,y) \land E(y,z) \rightarrow E(x,z)) \)
 - This is a tgd, but not an ID. It asserts that \(E \) is transitive.

- \(\forall x,y (E(x,y) \rightarrow \exists z (F(x,z) \land F(z,y))) \)
 - This says that for every edge in \(E \), there is a path of length 2 in \(F \).

- \(\forall x,y,z \ (P(x,y,z) \rightarrow R(x,y) \land T(y,z)) \)
 - This says that \(P \) is decomposed to \(R \) and \(T \).
Relational Calculus in Databases

Note:

- Relational calculus has been used in databases in two different ways:
 - As a database query language
 - As a specification language for expressing integrity constraints.

- In what follows, we will see that relational calculus is also used to formalize critical data interoperability tasks, such as
 - Data integration and
 - Data exchange
Data Integration

Query heterogeneous data in different sources via a virtual global schema
Data Exchange

Transform data structured under a *source* schema into data structured under a different *target* schema.
Schema Mappings

- Schema mappings:
 High-level, declarative assertions that specify the relationship between two database schemas.

- Schema mappings constitute the essential building blocks in formalizing and studying data interoperability tasks, including data integration and data exchange.

- Schema mappings help with the development of tools:
 - Are easier to generate and manage (semi)-automatically;
 - Can be compiled into SQL/XSLT scripts automatically.
Schema Mappings

- Schema Mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$
 - Source schema \mathbf{S}, Target schema \mathbf{T}
 - A set Σ of high-level, declarative assertions (constraints) that specify the relationship between \mathbf{S}-instances and \mathbf{T}-instances.

- $\text{Inst}(\mathbf{M}) = \{ (I, J) : I \text{ is an } \mathbf{S}\text{-instance, } J \text{ is a } \mathbf{T}\text{-instance, and } (I, J) \models \Sigma \}$.
Schema Mappings & Data Exchange

- **Schema Mapping** $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$
 - **Source** schema \mathbf{S}, **Target** schema \mathbf{T}
 - A set Σ of high-level, declarative assertions (constraints) that specify the relationship between \mathbf{S}-instances and \mathbf{T}-instances.

- **Data Exchange** via the schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$
 Transform a given **source** instance \mathbf{I} to a **target** instance \mathbf{J}, so that (\mathbf{I}, \mathbf{J}) satisfy the specifications Σ of \mathbf{M}.
Solutions in Schema Mappings

Definition: Schema Mapping \(M = (S, T, \Sigma) \)

If \(I \) is a source instance, then a solution for \(I \) is a target instance \(J \) such that \((I, J) \) satisfy \(\Sigma \).

Fact: In general, for a given source instance \(I \),

- No solution for \(I \) may exist (the constraints *overspecify*)
 or
- Multiple solutions for \(I \) may exist; in fact, *infinitely* many solutions for \(I \) may exist (the constraints *underspecify*).
Schema Mappings: Basic Problems

Definition: Schema Mapping \(M = (S, T, \Sigma) \)

- The **existence-of-solutions problem** \(\text{Sol}(M) \): (decision problem)
 Given a source instance \(I \), is there a solution \(J \) for \(I \)?

- The **data exchange problem associated with** \(M \): (function problem)
 Given a source instance \(I \), construct a solution \(J \) for \(I \), provided a solution exists.
 Ideally, schema mappings should be
- expressive enough to specify data interoperability tasks;
- simple enough to be efficiently manipulated by tools.

Question: How are schema mappings specified?

Answer: Use a high-level, declarative language. In particular, it is natural to try to use relational calculus (first-order logic) as a specification language for schema mappings.

Fact: There is a fixed relational calculus sentence specifying a schema mapping M^* such that $\text{Sol}(M^*)$ is undecidable.

Hence, we need to restrict ourselves to well-behaved fragments of relational calculus.
Let us consider some simple tasks that a schema mapping specification language should support:

- **Copy (Nicknaming):**
 - Copy each source table to a target table and rename it.

- **Projection:**
 - Form a target table by projecting on one or more columns of a source table.

- **Decomposition:**
 - Decompose a source table into two or more target tables.

- **Column Augmentation:**
 - Form a target table by adding one or more columns to a source table.

- **Join:**
 - Form a target table by joining two or more source tables.

- **Combinations of the above** (e.g., “join + column augmentation”)
Schema Mapping Specification Languages

- **Copy (Nicknaming):**
 \[\forall x_1, \ldots, x_n (P(x_1, \ldots, x_n) \rightarrow R(x_1, \ldots, x_n)) \]

- **Projection:**
 \[\forall x, y, z (P(x, y, z) \rightarrow R(x, y)) \]

- **Decomposition:**
 \[\forall x, y, z (P(x, y, z) \rightarrow R(x, y) \land T(y, z)) \]

- **Column Augmentation:**
 \[\forall x, y (P(x, y) \rightarrow \exists z R(x, y, z)) \]

- **Join:**
 \[\forall x, y, z (E(x, z) \land F(z, y) \rightarrow R(x, y, z)) \]

- **Combinations of the above** (e.g., “join + column augmentation”)
 \[\forall x, y, z (E(x, z) \land F(z, y) \rightarrow \exists w T(x, y, z, w)) \]
Question: What do all these tasks (copy, projection, decomposition, column augmentation, join) have in common?

Answer:
- They can be specified using tuple-generating dependencies (tgds).
- In fact, they can be specified using a special class of tuple-generating dependencies known as source-to-target tuple generating dependencies (s-t tgds).
The relationship between source and target is given by formulas of relational calculus, called

Source-to-Target Tuple Generating Dependencies (s-t tgds)

\[\forall \mathbf{x} \ (\varphi(\mathbf{x}) \rightarrow \exists \mathbf{y} \ \psi(\mathbf{x}, \mathbf{y})) , \text{ where} \]

- \(\varphi(\mathbf{x}) \) is a conjunction of atoms over the source;
- \(\psi(\mathbf{x}, \mathbf{y}) \) is a conjunction of atoms over the target;
- \(\mathbf{x} \) and \(\mathbf{y} \) are tuples of variables.

Example:

\((\text{Student}(s) \land \text{Enrolls}(s,c)) \rightarrow \exists t \ \exists g \ (\text{Teaches}(t,c) \land \text{Grade}(s,c,g))\)

(here, we have dropped the universal quantifiers in front of s-t tgds)
Schema Mapping Specification Language

- s-t tgds assert that: some **conjunctive** query over the source is **contained** in some other **conjunctive** query over the target.

\[(\text{Student (s) } \land \text{Enrolls(s,c)) } \rightarrow \exists t \exists g (\text{Teaches(t,c) } \land \text{Grade(s,c,g))}\]

- s-t tgds generalize the main specifications used in data integration:
 - They generalize LAV (**local-as-view**) specifications:
 \[P(x) \rightarrow \exists y \psi(x, y),\] where \(P\) is a **source** schema.
 - **Note:** Copy, projection, and decomposition are LAV s-t tgds.
 - They generalize GAV (**global-as-view**) specifications:
 \[\varphi(x) \rightarrow R(x),\] where \(R\) is a **target** relation
 (they are equivalent to full tgds: \(\varphi(x) \rightarrow \psi(x)\), where \(\varphi(x)\) and \(\psi(x)\) are conjunctions of atoms).
 - **Note:** Copy, projection, and join are GAV s-t tgds.
In addition to source-to-target dependencies, we also consider target dependencies, since, after all, the target schema may have its own integrity constraints:

- **Target Tgds**: $\varphi_T(x) \rightarrow \exists y \psi_T(x, y)$

 Dept (did, dname, mgr_id, mgr_name) \rightarrow Mgr (mgr_id, did)

 (a target inclusion dependency constraint)

- **Target Equality Generating Dependencies (egds)**: $\varphi_T(x) \rightarrow (x_1 = x_2)$

 (Mgr (e, d_1) \land Mgr (e, d_2)) \rightarrow (d_1 = d_2)

 (a target key constraint)
Schema Mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$, where

- Σ_{st} is a set of source-to-target tgds
- Σ_t is a set of target tgds and target egds
Underspecification in Data Exchange

- **Fact:** Given a source instance, multiple solutions may exist.

- **Example:**
 Source relation $E(A,B)$, target relation $H(A,B)$
 \[
 \Sigma: \quad E(x,y) \rightarrow \exists z \ (H(x,z) \land H(z,y))
 \]
 Source instance $I = \{E(a,b)\}$
 Solutions: **Infinitely** many solutions exist
 - $J_1 = \{H(a,b), H(b,b)\}$
 - $J_2 = \{H(a,a), H(a,b)\}$
 - $J_3 = \{H(a,X), H(X,b)\}$
 - $J_4 = \{H(a,X), H(X,b), H(a,Y), H(Y,b)\}$
 - $J_5 = \{H(a,X), H(X,b), H(Y,Y)\}$

 constants:
 \[a, b, \ldots\]

 variables (labelled nulls):
 \[X, Y, \ldots\]
Main issues in data exchange

For a given source instance, there may be multiple target instances satisfying the specifications of the schema mapping. Thus,

- When more than one solution exist, which solutions are “better” than others?

- How do we compute a “best” solution?

- In other words, what is the “right” semantics of data exchange?
Definition (FKMP 2003): A solution is universal if it has homomorphisms to all other solutions (thus, it is a “most general” solution).

- **Constants**: entries in source instances
- **Variables** (labeled nulls): other entries in target instances
- **Homomorphism** $h: J_1 \rightarrow J_2$ between target instances:
 - $h(c) = c$, for constant c
 - If $P(a_1,\ldots,a_m)$ is in J_1, then $P(h(a_1),\ldots,h(a_m))$ is in J_2.

Claim: Universal solutions are the preferred solutions in data exchange.
Universal Solutions in Data Exchange

\[\Sigma \]

Schema \(S \)
Schema \(T \)

\[I \rightarrow J \rightarrow J_1, J_2, J_3 \]

Universal Solution

Homomorphisms

\[h_1, h_2, h_3 \]

Solutions
Example - continued

Source relation $S(A,B)$, target relation $T(A,B)$

$\Sigma : \quad E(x,y) \rightarrow \exists z \ (H(x,z) \land H(z,y))$

Source instance $I = \{E(a,b)\}$

Solutions: Infinitely many solutions exist

- $J_1 = \{H(a,b), H(b,b)\}$ is not universal
- $J_2 = \{H(a,a), H(a,b)\}$ is not universal
- $J_3 = \{H(a,X), H(X,b)\}$ is universal
- $J_4 = \{H(a,X), H(X,b), H(a,Y), H(Y,b)\}$ is universal
- $J_5 = \{H(a,X), H(X,b), H(Y,Y)\}$ is not universal
Universal solutions are analogous to most general unifiers in logic programming.

Uniqueness up to homomorphic equivalence:
If J and J’ are universal for I, then they are homomorphically equivalent.

Representation of the entire space of solutions:
Assume that J is universal for I, and J’ is universal for I’. Then the following are equivalent:
1. I and I’ have the same space of solutions.
2. J and J’ are homomorphically equivalent.
The Existence-of-Solutions Problem

Question: What can we say about the existence-of-solutions problem $\text{Sol}(M)$ for a fixed schema mapping $M = (S, T, \Sigma_{st}, \Sigma_t)$ specified by s-t tgds and target tgds and egds?

Answer: Depending on the target constraints in Σ_t:
- $\text{Sol}(M)$ can be trivial (solutions always exist).
 ...
- $\text{Sol}(M)$ can be in PTIME.
 ...
- $\text{Sol}(M)$ can be undecidable.
Proposition: If $M = (S, T, \Sigma_{st}, \Sigma_t)$ is a schema mapping such that Σ_t is a set of full (GAV) target tgds, then:

- Solutions always exist; hence, $\text{Sol}(M)$ is trivial.

- There is a Datalog program π over the target T that can be used to compute universal solutions as follows:

 1. Compute a universal solution J^* for I w.r.t. the schema mapping $M^* = (S, T, \Sigma_{st})$ using the naïve chase algorithm.
 2. Run the Datalog program π on J^* to obtain a universal solution J for I w.r.t. M.

 Note: The Datalog program π is initialized by setting all of its predicates to the values of the relations in J^*.

- Consequently, universal solutions can be computed in polynomial time.
The Naïve Chase Algorithm

Naïve Chase Algorithm for $M^* = (S, T, \Sigma_{st})$: given a source instance I, build a target instance J^* that satisfies each s-t tgd in Σ_{st}

- by introducing new facts in J^* as dictated by the RHS of the s-t tgd and
- by introducing new values (variables) in J^* each time existential quantifiers need witnesses.

Example: $M = (S, T, \Sigma_{st})$ (here $\Sigma_t = \emptyset$)

$$\Sigma_{st} : E(x,y) \rightarrow \exists z(F(x,z) \land F(z,y))$$

The naïve chase returns a relation F^* obtained from E by adding a new node between every edge of E.

- If $E = \{(1,2)\}$, then $F^* = \{(1,N),(N,2)\}$ Universal solution for E
- If $E = \{(1,2),(2,3),(1,4)\}$, then $F^* = \{(1,M),(M,2),(2,N),(N,3),(1,U),(U,4)\}$
 Universal solution for E
The Naïve Chase Algorithm

Example: Collapsing paths of length 2 to edges

\[M = (S, T, \Sigma_{st}) \quad (\text{here } \Sigma_t = \emptyset) \]

\[\Sigma_{st}: \quad E(x,z) \land E(z,y) \rightarrow F(x,y) \quad \text{ (GAV mapping)} \]

- \[E = \{ (1,3), (2,4), (3,4) \} \]
 \[F^* = \{ F(1,4) \} \quad \text{Universal Solution for E} \]

- \[E = \{ (1,3), (2,4), (3,4), (4,3) \} \]
 \[F^* = \{ (1,4), (2,3), (3,3), (4,4) \} \quad \text{Universal solution for E} \]
Algorithmic Problems in Data Exchange

\[M = (S, T, \Sigma_{st}, \Sigma_t) \] is a schema mapping such that \(\Sigma_t \) is a set of full (GAV) target tgds:
- Universal solutions can be computed in polynomial time using Naïve chase for \(\Sigma_{st} \) + Datalog program extracted from \(\Sigma_t \)

Example: \[M = (S, T, \Sigma_{st}, \Sigma_t) \]

\[\Sigma_{st}: E(x,y) \rightarrow \exists z(F(x,z) \land F(z,y)) \]
\[\Sigma_t: F(u,w) \land F(w,v) \rightarrow F(u,v) \]

1. The naïve chase returns a relation \(F^* \) obtained from \(E \) by adding a new node between every edge of \(E \).
2. The Datalog program \(\pi \) computes the **transitive closure** of \(F^* \).
Algorithmic Problems in Data Exchang

Proposition: If $M = (S, T, \Sigma_{str}, \Sigma_{t})$ is a schema mapping such that Σ_{t} is a set of **full target tgds** and **target egds**, then:

- Solutions need not always exist.
- The existence-of-solutions problem $\text{Sol}(M)$ is in PTIME, and may be PTIME-complete.

Proof: Reduction from **Path Systems**.
Recall the Datalog program:
$$T(x) : \text{-} A(x)$$
$$T(x) : \text{-} R(x,y,z), T(y), T(z).$$

Fact: The following problem is P-complete:
Given sets A and B, and a ternary relation R, is $B \cap T \neq \emptyset$, where T is the semantics of the above Datalog program.
Algorithmic Problems in Data Exchange

Reducing **Path Systems** to the Existence-of-Solutions Problem \(\text{Sol}(M) \)

- \(\Sigma_{st}: \)
 - \(A(x) \rightarrow A'(x) \)
 - \(R(x,y,z) \rightarrow R'(x,y,z) \)
 - \(B(x) \rightarrow B'(x) \)
 - \(V(x) \rightarrow V'(x) \)

- \(\Sigma_{t}: \)
 - \(A'(x) \rightarrow T(x) \)
 - \(T(y) \land T(z) \land R'(x,y,z) \rightarrow T(x) \)
 - \(T(x) \land B'(x) \land V'(u) \rightarrow W(u) \)
 - \(W(u) \land W(v) \rightarrow u = v \)

Fact: \(B \cap T \neq \emptyset \) if and only if the instance I has no solution, where I consists of A, B, R, and V = \{0,1\}.
Algorithmic Problems in Data Exchange

Question:

What about arbitrary target tgds and egds?
Undecidability in Data Exchange

Theorem (K ..., Panttaja, Tan - 2006):

There is a schema mapping \(M = (S, T, \Sigma_{st}^*, \Sigma_t^*) \) such that:

- \(\Sigma_{st}^* \) consists of a single source-to-target tgd;
- \(\Sigma_t^* \) consists of one egd, one full target tgd, and one (non-full) target tgd;
- The existence-of-solutions problem \(\text{Sol}(M) \) is undecidable.

Hint of Proof:

Reduction from the

Embedding Problem for Finite Semigroups:

Given a finite partial semigroup, can it be embedded to a finite semigroup?
Reducing the **Embedding Problem for Semigroups** to **Sol(M)**

- Σ_{st}: \(R(x,y,z) \rightarrow R'(x,y,z) \)

- Σ_t:
 - R’ is a partial function:
 \(R'(x,y,z) \land R'(x,y,w) \rightarrow z = w \)
 - R’ is associative
 \(R'(x,y,u) \land R'(y,z,v) \land R'(u,z,w) \rightarrow R'(x,u,w) \)
 - R’ is a total function
 \[
 R'(x,y,z) \land R'(x',y',z') \rightarrow \exists w_1 \ldots \exists w_9 \\
 (R'(x,x',w_1) \land R'(x,y',w_2) \land R'(x,z',w_3)) \\
 (R'(y,x',w_4) \land R'(y,y',w_5) \land R'(x,z',w_6)) \\
 (R'(z,x',w_7) \land R'(z,y',w_8) \land R'(z,z',w_9))
 \]