Equality-Generating Dependencies

Definition: An equality-generating dependency (egd) is a formula of relational calculus of the form:

\[\forall x_1,\ldots,x_n(\varphi(x_1,\ldots,x_n) \rightarrow x_i = x_j), \]

where \(\varphi(x_1,\ldots,x_n) \) is a conjunction of atomic formulas (i.e., \(\varphi \) is a conjunctive query).

Examples:

- \[\forall x_1,x_2,x_3(R(x_1,x_2) \land P(x_2,x_3) \land T(x_2) \rightarrow x_2 = x_3) \]
 - This is an egd, but not a FD.

- \[\forall x_1,x_2,x_3(R(x_1,x_2) \land R(x_1,x_3) \rightarrow x_2 = x_3) \]
 - This is both an egd and a FD, namely \(A_1 \rightarrow A_2 \).
Tuple-Generating Dependencies

Definition: A tuple-generating dependency (tgd) is a formula of relational calculus of the form:

\[\forall x_1, \ldots, x_n (\varphi(x_1, \ldots, x_n) \rightarrow \exists y_1, \ldots, y_m \psi(x'_1, \ldots, x'_k, y_1, \ldots, y_m)), \]

where

- \(\varphi(x_1, \ldots, x_n) \) and \(\psi(x'_1, \ldots, x'_k, y_1, \ldots, y_m) \) are conjunctions of atomic formulas
- The variables \(x'_1, \ldots, x'_k \) are among the variables \(x_1, \ldots, x_n \).

Note: In effect, a tuple-generating dependency asserts that one conjunctive query (namely, the one defined by \(\varphi(x_1, \ldots, x_n) \)) is contained in another conjunctive query (namely, the one defined by \(\exists y_1, \ldots, y_m \psi(x'_1, \ldots, x'_k, y_1, \ldots, y_m) \)).
Schema Mappings & Data Exchange

- **Schema Mapping** \(M = (S, T, \Sigma) \)
 - *Source* schema \(S \), *Target* schema \(T \)
 - A set \(\Sigma \) of high-level, declarative assertions (constraints) that specify the relationship between \(S \)-instances and \(T \)-instances.

- **Data Exchange** via the schema mapping \(M = (S, T, \Sigma) \)
 Transform a given *source* instance \(I \) to a *target* instance \(J \), so that \((I, J)\) satisfy the specifications \(\Sigma \) of \(M \).
Definition: Schema Mapping \(M = (S, T, \Sigma) \)

- The existence-of-solutions problem \(\text{Sol}(M) \): (decision problem)
 Given a source instance \(I \), is there a solution \(J \) for \(I \)?

- The data exchange problem associated with \(M \): (function problem)
 Given a source instance \(I \), construct a solution \(J \) for \(I \), provided a solution exists.
The relationship between source and target is given by formulas of relational calculus, called

Source-to-Target Tuple Generating Dependencies (s-t tgds)

\[\forall x (\varphi(x) \rightarrow \exists y \psi(x, y)), \text{ where} \]

- \(\varphi(x) \) is a conjunction of atoms over the source;
- \(\psi(x, y) \) is a conjunction of atoms over the target;
- \(x \) and \(y \) are tuples of variables.

Example:

\((\text{Student}(s) \land \text{Enrolls}(s,c)) \rightarrow \exists t \exists g (\text{Teaches}(t,c) \land \text{Grade}(s,c,g)) \)

(here, we have dropped the universal quantifiers in front of s-t tgds)
Schema Mapping Specification Language

- s-t tgds assert that: some **conjunctive** query over the source is **contained** in some other **conjunctive** query over the target.

\[(\text{Student}(s) \land \text{Enrolls}(s,c)) \rightarrow \exists t \exists g \ (\text{Teaches}(t,c) \land \text{Grade}(s,c,g))\]

- s-t tgds generalize the main specifications used in data integration:
 - They generalize LAV (**local-as-view**) specifications:
 \[P(x) \rightarrow \exists y \ \psi(x, y), \text{ where } P \text{ is a source schema.} \]
 Note: Copy, projection, and decomposition are LAV s-t tgds.
 - They generalize GAV (**global-as-view**) specifications:
 \[\varphi(x) \rightarrow R(x), \text{ where } R \text{ is a target relation} \]
 (they are equivalent to full tgds: \(\varphi(x) \rightarrow \psi(x)\),
 where \(\varphi(x)\) and \(\psi(x)\) are conjunctions of atoms).
 Note: Copy, projection, and join are GAV s-t tgds.
Target Dependencies

In addition to source-to-target dependencies, we also consider target dependencies, since, after all, the target schema may have its own integrity constraints:

- **Target Tgds**: $\varphi_T(x) \rightarrow \exists y \psi_T(x, y)$

 Dept (did, dname, mgr_id, mgr_name) → Mgr (mgr_id, did)
 (a target inclusion dependency constraint)

- **Target Equality Generating Dependencies (egds)**:
 $\varphi_T(x) \rightarrow (x_1 = x_2)$

 (Mgr (e, d_1) ∧ Mgr (e, d_2)) → (d_1 = d_2)
 (a target key constraint)
Data Exchange Framework

Schema Mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$, where

- Σ_{st} is a set of source-to-target tgds
- Σ_t is a set of target tgds and target egds
Underspecification in Data Exchange

- **Fact:** Given a source instance, multiple solutions may exist.

- **Example:**
 Source relation $E(A,B)$, target relation $H(A,B)$
 \[\Sigma: \quad E(x,y) \rightarrow \exists z \ (H(x,z) \land H(z,y)) \]
 Source instance $I = \{E(a,b)\}$
 Solutions: Infinitely many solutions exist
 - $J_1 = \{H(a,b), H(b,b)\}$
 - $J_2 = \{H(a,a), H(a,b)\}$
 - $J_3 = \{H(a,X), H(X,b)\}$
 - $J_4 = \{H(a,X), H(X,b), H(a,Y), H(Y,b)\}$
 - $J_5 = \{H(a,X), H(X,b), H(Y,Y)\}$

constants:
- a, b, ...

variables (labelled nulls):
- X, Y, ...
Universal Solutions in Data Exchange

Definition (FKMP 2003): A solution is universal if it has homomorphisms to all other solutions (thus, it is a “most general” solution).

- **Constants**: entries in source instances
- **Variables** (labeled nulls): other entries in target instances
- **Homomorphism** $h: J_1 \rightarrow J_2$ between target instances:
 - $h(c) = c$, for constant c
 - If $P(a_1,\ldots,a_m)$ is in J_1, then $P(h(a_1),\ldots,h(a_m))$ is in J_2.

Claim: Universal solutions are the *preferred* solutions in data exchange.
Universal Solutions in Data Exchange

\[\Sigma \]

Schema \(S \)
Schema \(T \)

Universal Solution

\[J \]

Solutions

\[J_1 \]
\[J_2 \]
\[J_3 \]

Homomorphisms

\[h_1 \]
\[h_2 \]
\[h_3 \]
Source relation $S(A,B)$, target relation $T(A,B)$

$\Sigma : E(x,y) \rightarrow \exists z \ (H(x,z) \land H(z,y))$

Source instance $I = \{E(a,b)\}$

Solutions: Infinitely many solutions exist

- $J_1 = \{H(a,b) , H(b,b)\}$ is not universal
- $J_2 = \{H(a,a), H(a,b)\}$ is not universal
- $J_3 = \{H(a,X) , H(X,b)\}$ is universal
- $J_4 = \{H(a,X), H(X,b) , H(a,Y), H(Y,b)\}$ is universal
- $J_5 = \{H(a,X) , H(X,b) , H(Y,Y)\}$ is not universal
The Existence-of-Solutions Problem

Question: What can we say about the existence-of-solutions problem $\text{Sol}(M)$ for a fixed schema mapping $M = (S, T, \Sigma_\text{st}, \Sigma_t)$ specified by s-t tgds and target tgds and egds?

Answer: Depending on the target constraints in Σ_t:
- $\text{Sol}(M)$ can be trivial (solutions always exist).
 ...
- $\text{Sol}(M)$ can be in PTIME.
 ...
- $\text{Sol}(M)$ can be undecidable.
Algorithmic Problems in Data Exchange

Proposition: If $M = (S, T, \Sigma_{st}, \Sigma_t)$ is a schema mapping such that Σ_t is a set of **full (GAV) target tgds**, then:

- Solutions always exist; hence, $\text{Sol}(M)$ is trivial.

- There is a **Datalog program** π over the target T that can be used to compute universal solutions as follows:

 Given a source instance I,

 1. Compute a universal solution J^* for I w.r.t. the schema mapping $M^* = (S, T, \Sigma_{st})$ using the **naïve chase** algorithm.
 2. Run the **Datalog program** π on J^* to obtain a universal solution J for I w.r.t. M.

 Note: The Datalog program π is initialized by setting all of its predicates to the values of the relations in J^*.

- Consequently, universal solutions can be computed in polynomial time.
The Naïve Chase Algorithm

Naïve Chase Algorithm for $M^* = (S, T, \Sigma_{st})$: given a source instance I, build a target instance J^* that satisfies each s-t tgd in Σ_{st}
- by introducing new facts in J as dictated by the RHS of the s-t tgd and
- by introducing new values (variables) in J each time existential quantifiers need witnesses.

Example: $M = (S, T, \Sigma_{st})$ (here $\Sigma_t = \emptyset$)

Σ_{st}: $E(x, y) \rightarrow \exists z(F(x, z) \land F(z, y))$

The naïve chase returns a relation F^* obtained from E by adding a new node between every edge of E.
- If $E = \{(1, 2)\}$, then $F^* = \{(1, N), (N, 2)\}$ Universal solution for E
- If $E = \{(1, 2), (2, 3), (1, 4)\}$, then $F^* = \{(1, M), (M, 2), (2, N), (N, 3), (1, U), (U, 4)\}$ Universal solution for E
The Naïve Chase Algorithm

Example: Collapsing paths of length 2 to edges

\[\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{\mathit{st}}) \quad (\text{here } \Sigma_{\mathit{t}} = \emptyset) \]

\[\Sigma_{\mathit{st}} : \quad \mathcal{E}(x,z) \land \mathcal{E}(z,y) \rightarrow \mathcal{F}(x,y) \quad \text{(GAV mapping)} \]

- \(E = \{ (1,3), (2,4), (3,4) \} \)
 \(F^* = \{ F(1,4) \} \) Universal Solution for \(E \)

- \(E = \{ (1,3), (2,4), (3,4), (4,3) \} \)
 \(F^* = \{ (1,4), (2,3), (3,3), (4,4) \} \) Universal solution for \(E \)
Algorithmic Problems in Data Exchange

\[\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{\text{st}}, \Sigma_{\text{t}}) \] is a schema mapping such that \(\Sigma_{\text{t}} \) is a set of full (GAV) target tgds:

- Universal solutions can be computed in polynomial time using Naïve chase for \(\Sigma_{\text{st}} \) + Datalog program extracted from \(\Sigma_{\text{t}} \)

Example: \(\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{\text{st}}, \Sigma_{\text{t}}) \)

\[\Sigma_{\text{st}}: \ E(x,y) \rightarrow \exists z(F(x,z) \land F(z,y)) \]
\[\Sigma_{\text{t}}: \ F(u,w) \land F(w,v) \rightarrow F(u,v) \]

1. The naïve chase returns a relation \(F^* \) obtained from \(E \) by adding a new node between every edge of \(E \).
2. The Datalog program \(\pi \) computes the **transitive closure** of \(F^* \).
Algorithmic Problems in Data Exchang

Proposition: If $M = (S, T, \Sigma_{str}, \Sigma_t)$ is a schema mapping such that Σ_t is a set of **full target tgds** and **target egds**, then:

- Solutions need not always exist.
- The existence-of-solutions problem $\text{Sol}(M)$ is in PTIME, and may be PTIME-complete.

Proof: Reduction from **Path Systems**.
Recall the Datalog program:
$T(x) :- A(x)$
$T(x) :- R(x,y,z), T(y), T(z)$.

Fact: The following problem is P-complete:
Given sets A and B, and a ternary relation R, is $B \cap T \neq \emptyset$, where T is the semantics of the above Datalog program.
Question:

What about arbitrary target tgds and egds?
Theorem (K ... , Panttaja, Tan - 2006):
There is a schema mapping $M = (S, T, \Sigma^*_{st}, \Sigma^*_{t})$ such that:

- Σ^*_{st} consists of a single source-to-target tgd;
- Σ^*_{t} consists of one egd, one full target tgd, and one (non-full) target tgd;
- The existence-of-solutions problem $\text{Sol}(M)$ is undecidable.

Hint of Proof:
Reduction from the **Embedding Problem for Finite Semigroups**:
Given a finite partial semigroup, can it be embedded to a finite semigroup?
The Embedding Problem & Data Exchange

Reducing the **Embedding Problem for Semigroups** to **\(\text{Sol}(M) \)**

- \(\Sigma_{st} : R(x,y,z) \rightarrow R'(x,y,z) \)

- \(\Sigma_t : \)
 - \(R' \) is a **partial function**:
 \(R'(x,y,z) \land R'(x,y,w) \rightarrow z = w \)

 - \(R' \) is **associative**
 \(R'(x,y,u) \land R'(y,z,v) \land R'(u,z,w) \rightarrow R'(x,u,w) \)

 - \(R' \) is a **total function**
 \(R'(x,y,z) \land R'(x',y',z') \rightarrow \exists w_1 \ldots \exists w_9 \)

 - \(R'(x,x',w_1) \land R'(x,y',w_2) \land R'(x,z',w_3) \)
 - \(R'(y,x',w_4) \land R'(y,y',w_5) \land R'(x,z',w_6) \)
 - \(R'(z,x',w_7) \land R'(z,y',w_8) \land R'(z,z',w_9) \)
The Existence-of-Solutions Problem

Summary: The existence-of-solutions problem

- is **undecidable** for schema mappings in which the target dependencies are arbitrary tgds and egds;
- is in **PTIME** for schema mappings in which the target dependencies are **full** tgds and egds.

Question: Are there classes of target tgds **richer** than full tgds and egds for which the existence-of-solutions problem is in **PTIME**?
Algorithmic Properties of Universal Solutions

Theorem (FKMP 2003): Schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$ such that:

- Σ_{st} is a set of source-to-target tgds;
- Σ_t is the union of a weakly acyclic set of target tgds with a set of target egds.

Then:

- Universal solutions exist if and only if solutions exist.
- $\text{Sol}(\mathbf{M})$ is in PTIME.
- A *canonical* universal solution (if a solution exists) can be produced in polynomial time using the chase procedure.
Weakly Acyclic Sets of Tgds

Weakly acyclic sets of tgds contain as special cases:

- **Sets of full tgds**
 \[\varphi_T(x,x') \rightarrow \psi_T(x), \]
 where \(\varphi_T(x,x') \) and \(\psi_T(x) \) are conjunctions of target atoms.

- **Acyclic sets of inclusion dependencies**
 Large class of dependencies occurring in practice.
Weakly Acyclic Sets of Tgds: Definition

- **Position graph** of a set Σ of tgds:
 - **Nodes:** $R.A$, with R relation symbol, A attribute of R
 - **Edges:** for every $\varphi(x) \rightarrow \exists y \psi(x, y)$ in Σ, for every x in x occurring in ψ, for every occurrence of x in φ in $R.A$:
 - For every occurrence of x in ψ in $S.B$, add an edge $R.A \rightarrow S.B$
 - In addition, for every existentially quantified y that occurs in ψ in $T.C$, add a **special edge** $R.A \rightarrow T.C$

- Σ is **weakly acyclic** if the position graph has no cycle containing a **special edge**.

- A tgd θ is **weakly acyclic** if so is the singleton set $\{\theta\}$.
Weakly Acyclic Sets of Tgds: Examples

- **Example 1:** \{ D(e,m) \rightarrow M(m), \ M(m) \rightarrow \exists \ e \ D(e,m) \} is weakly acyclic, but cyclic.

- **Example 2:** \{ E(x,y) \rightarrow \exists \ z \ E(y,z) \} is not weakly acyclic.
Theorem (FKMP): Schema mapping $M = (S, T, \Sigma_{st}, \Sigma_t)$ such that:
- Σ_{st} is a set of source-to-target tgds;
- Σ_t is the union of a weakly acyclic set of target tgds with a set of target egds.

There is an algorithm, based on the chase procedure, so that:

- Given a source instance I, the algorithm determines if a solution for I exists; if so, it produces a canonical universal solution for I.

- The running time of the algorithm is polynomial in the size of I.

- Hence, the existence-of-solutions problem $\text{Sol}(M)$ for M, is in PTIME.
Chase Procedure for Tgds and Egds

Given a source instance I,
1. Use the naïve chase to chase I with Σ_{st} and obtain a
target instance J^*.
2. Chase J^* with the target tgds and the target egds in Σ_t to obtain a target instance J
as follows:
 2.1. For target tgds introduce new facts in J as dictated by the RHS of the
 s-t tgd and introduce new values (variables) in J each time existential
 quantifiers need witnesses.
 2.2. For target egds $\phi(x) \rightarrow x_1 = x_2$
 2.2.1. If a variable is equated to a constant, replace the variable by that
 constant;
 2.2.2. If one variable is equated to another variable, replace one
 variable by the other variable.
 2.2.3 If one constant is equated to a different constant, stop and repor
 “failure”.
Weak Acyclicity and the Chase Procedure

Note: If the set of target tgd}s is not weakly acyclic, then the chase may never terminate.

Example: $E(x, y) \rightarrow \exists z \ E(y,z)$ is not weakly acyclic

- $E(1,2)$ \Rightarrow
- $E(2,X_1)$ \Rightarrow
- $E(X_1,X_2)$ \Rightarrow
- $E(X_2, X_3)$ \Rightarrow
- ... infinite chase
The Existence of Solutions Problem

Summary: The existence-of-solutions problem

- is undecidable for schema mappings in which the target dependencies are arbitrary tgds and egds;
- is in PTIME for schema mappings in which the set of the target dependencies is the union of a weakly acyclic set of tgds and a set of egds.

Note:

- These are *data complexity* results.
- The *combined complexity* of the existence-of-solutions problem is 2EXPTIME-complete (weakly acyclic sets of target tgds and egds).
The Complexity of the Existence of Solutions Problem

$M = (S, T, \Sigma_{st}, \Sigma_t)$

<table>
<thead>
<tr>
<th>Σ_t:</th>
<th>Existence-of-Solutions Problem</th>
<th>Existence-of-Universal Solutions Problem</th>
<th>Computing a Universal Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full target tgds</td>
<td>Trivial</td>
<td>Trivial</td>
<td>PTIME</td>
</tr>
<tr>
<td>Full target tgds + egds</td>
<td>PTIME</td>
<td>PTIME</td>
<td>PTIME</td>
</tr>
<tr>
<td>Weakly acyclic set of target tgds + egds</td>
<td>PTIME (It can be PTIME-complete)</td>
<td>PTIME (Univ. solutions exist if and only if solutions exist)</td>
<td>PTIME</td>
</tr>
<tr>
<td>Target tgds + egds</td>
<td>Undecidable, in general</td>
<td>Undecidable, in general</td>
<td>No algorithm exists, in general</td>
</tr>
</tbody>
</table>
Outline – Progress Report

- Schema Mappings and Data Exchange: Overview

- Solutions in Data Exchange
 - Universal Solutions
 - Universal Solutions via the Chase

- Query Answering in Data Exchange
Question: What is the semantics of target query answering?

Definition: The certain answers of a query q over T on I

$$\text{certain}(q, I) = \bigcap \{ q(J): J \text{ is a solution for } I \}.$$

Note: It is the standard semantics in data integration.
Example: Source relation $E(A,B)$, target relation $H(A,B)$

$$\Sigma: \ E(x,y) \rightarrow \exists z \ (H(x,z) \land H(z,y))$$

Target conjunctive query \(q(x):- H(x,y)\)

Source instance \(I = \{E(a,b)\}\)

Solutions: Infinitely many solutions exist

- \(J_1 = \{H(a,b), H(b,b)\}\) \(q(J_1) = \{a, b\}\)
- \(J_2 = \{H(a,a), H(a,b)\}\) \(q(J_2) = \{a\}\)
- \(J_3 = \{H(a,X), H(X,b)\}\) \(q(J_3) = \{a, X\}\)
- \(J_4 = \{H(a,X), H(X,b), H(a,Y), H(Y,b)\}\) \(q(J_4) = \{a, X, Y\}\)
- \(J_5 = \{H(a,X), H(X,b), H(Z,Z)\}\) \(q(J_5) = \{a,X,Z\}\)
- ...

\(\text{certain}(q, I) = \cap \{ q(J): J \text{ is a solution for } I \} = \{a\}\)
Certain Answers Semantics

\[
\text{certain}(q,I) = \bigcap \{ q(J) : J \text{ is a solution for } I \}.
\]
Theorem (FKMP): Schema mapping $M = (S, T, \Sigma_{st}, \Sigma_t)$ such that:

- Σ_{st} is a set of source-to-target tgds, and
- Σ_t is the union of a weakly acyclic set of tgds with a set of egds.

Let q be a union of conjunctive queries over T.

- If I is a source instance and J is a universal solution for I, then

 $$\text{certain}(q,I) = \text{the set of all "variable-free" tuples in } q(J).$$

Hence, $\text{certain}(q,I)$ is computable in time polynomial in $|I|$:

1. Compute a canonical universal J solution in polynomial time;
2. Evaluate $q(J)$ and remove tuples with “variables”.

Note: This is a data complexity result (M and q are fixed).
Example: Source relation E(A,B), target relation H(A,B)

\[\Sigma: \quad \text{E}(x,y) \rightarrow \exists z \ (\text{H}(x,z) \land \text{H}(z,y)) \]

Target conjunctive query \(q(x):- \text{H}(x,y) \)

Source instance \(I = \{\text{E}(a,b)\} \)

Solutions: Infinitely many solutions exist

- \(J_1 = \{\text{H}(a,b), \text{H}(b,b)\} \)
 \(q(J_1) = \{a, b\} \)
- \(J_2 = \{\text{H}(a,a), \text{H}(a,b)\} \)
 \(q(J_2) = \{a\} \)
- \(J_3 = \{\text{H}(a,X), \text{H}(X,b)\} \) universal solution
 - \(q(J_3) = \{a, X\} \)
 - Variable-free part of \(q(J_3) = \{a\} = \text{certain}(q,I) \)
Certain Answers via Universal Solutions

\[\text{certain}(q, I) = \text{set of null-free tuples of } q(J). \]
Computing the Certain Answers

Theorem (FKMP): Schema mapping $M = (S, T, \Sigma_{st}, \Sigma_t)$ such that:
- Σ_{st} is a set of source-to-target tgds, and
- Σ_t is the union of a weakly acyclic set of tgds with a set of egds.

Let q be a union of conjunctive queries with inequalities (\neq).
- If q has at most one inequality per conjunct, then $\text{certain}(q, I)$ is computable in time polynomial in $|I|$ using a disjunctive chase.
- If q is has at most two inequalities per conjunct, then $\text{certain}(q, I)$ can be coNP-complete, even if $\Sigma_t = \emptyset$.
From Theory to Practice

- Clio Project at IBM Almaden:
 - Semi-automatic schema-mapping generation tool;
 - Data exchange system based on schema mappings.

- Universal solutions used as the semantics of data exchange.

- Universal solutions are generated via SQL queries extended with Skolem functions (implementation of chase procedure), provided there are no target constraints.

- Clio technology is now part of IBM Rational® Data Architect.
Some Features of Clio

- Supports **nested** structures
 - Nested Relational Model
 - Nested Constraints
- Automatic & semi-automatic discovery of attribute correspondence.
- Interactive derivation of schema mappings.
- Performs data exchange
Schema Mappings in Clio

Data exchange process (or SQL/XQuery/XSLT)

Source Schema S

"conforms to"

Mapping Generation

Target Schema T

"conforms to"