Universal Models for Guarded Tgds

André Hernich
Universal Models
Data Exchange
(Fagin, Kolaitis, Miller, Popa '03)

Goal: **Materialize** a target database.
Specifying the Translation

- Source schema S
 - Amtrak(from, to, fare)
 - Caltrain(from, to)

- Target schema T
 - Conn(from, to, fare)

- Set Σ of declarative assertions / constraints

 Amtrak(x, y, z) \rightarrow Conn(x, y, z)
 Caltrain(x, y) \rightarrow $\exists z$ Conn(x, y, z)
 Conn(x, y, z) \land Conn(x, y, z') \rightarrow $z = z'$
Types of Constraints 1/2

Tuple-Generating Dependencies (tgds)

\[R_1(x_1) \land \cdots \land R_k(x_k) \rightarrow \exists z \; S_1(y_1) \land \cdots \land S_l(y_l) \]

contains only variables from the body and \(z \)

Example:

\[\text{Amtrak}(x, y, u) \land \text{Caltrain}(y, z) \rightarrow \exists v \; \text{Conn}(x, z, v) \]
Types of Constraints 2/2

Equality-Generating Dependencies (egds)

\[R_1(\bar{x}_1) \land \cdots \land R_k(\bar{x}_k) \rightarrow y = z \]

Example:

\[\text{Conn}(x, y, z) \land \text{Conn}(x, y, z') \rightarrow z = z' \]
Admissible Target Databases

Amtrak
- from, to, fare

Caltrain
- from, to

Conn
- from, to, fare

Solutions

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>fare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Cruz</td>
<td>San Jose</td>
<td>$5</td>
</tr>
<tr>
<td>San Jose</td>
<td>Palo Alto</td>
<td>X</td>
</tr>
</tbody>
</table>

Train Data

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>fare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Cruz</td>
<td>San Jose</td>
<td>$5</td>
</tr>
<tr>
<td>San Jose</td>
<td>Palo Alto</td>
<td>X</td>
</tr>
<tr>
<td>San Jose</td>
<td>Gilroy</td>
<td>$10</td>
</tr>
<tr>
<td>San Jose</td>
<td>Palo Alto</td>
<td>$42</td>
</tr>
</tbody>
</table>
Universal Solutions
(Fagin, Kolaitis, Miller, Popa '03)

Universal solution:
- a solution \(J \)
- for every other solution \(J' \) there is a homomorphism from \(J \) to \(J' \)
Example Revisited

Amtrak(from, to, fare)
Caltrain(from, to)
Conn(from, to, fare)

Amtrak\((x, y, z) \rightarrow \text{Conn}(x, y, z) \)
Caltrain\((x, y) \rightarrow \exists z \text{Conn}(x, y, z) \)
Conn\((x, y, z) \land \text{Conn}(x, y, z') \rightarrow z = z' \)

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>fare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Cruz</td>
<td>San Jose</td>
<td>$5</td>
</tr>
<tr>
<td>San Jose</td>
<td>Palo Alto</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>fare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Cruz</td>
<td>San Jose</td>
<td>$5</td>
</tr>
<tr>
<td>San Jose</td>
<td>Palo Alto</td>
<td>X</td>
</tr>
<tr>
<td>San Jose</td>
<td>Gilroy</td>
<td>$10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>fare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Cruz</td>
<td>San Jose</td>
<td>$5</td>
</tr>
<tr>
<td>San Jose</td>
<td>Palo Alto</td>
<td>$42</td>
</tr>
</tbody>
</table>
Using Universal Solutions

Theorem (Fagin, Kolaitis, Miller, Popa '03)
If I is a source database, and Q is a Boolean conjunctive query over the target schema:

$$Q \text{ is true in all solutions for } I \iff Q \text{ is true in a universal solution for } I$$
Further Applications of Universal Solutions

- Data integration
- Answering conjunctive queries over incomplete databases
- ...

Answering Conjunctive Queries over Incomplete Databases

Given: Database D, constraints Σ (tgds & egds), Boolean conjunctive query Q
Task: Decide whether Q is true in all models of D and Σ.

- **Model of D and Σ**: (possibly infinite) database containing D and satisfying Σ
- **Universal model**: finite model with homomorphisms into all other models
How to Compute Universal Models?
Undecidability

Theorem (H., Schweikardt '07)
Existence of universal models is undecidable, even for some fixed set of tgdss.
The Chase (Beeri, Vardi '84)

\[\Sigma: \ R(x, y) \land P(x) \rightarrow \exists z \ S(y, z) \quad \text{D = \{ R(a,b), P(a) \}} \]

\[S(y, z) \rightarrow P(z) \]

\[S(y, z) \rightarrow \exists u \ R(z, u) \]

Chase:
1) \{ R(a,b), P(a) \}
2) \{ R(a,b), P(a), S(b,X) \}
3) \{ R(a,b), P(a), S(b,X), P(X) \}
4) \{ R(a,b), P(a), S(b,X), P(X), R(X,Y) \}
5) \{ R(a,b), P(a), S(b,X), P(X), R(X,Y), S(Y,Z) \}
6) ...

Result of the chase = union of all these databases
Basic Properties

- If the chase terminates, then its result is a universal model (Fagin, Kolaitis, Miller, Popa '03).
- The chase may not terminate. Termination is undecidable.
Termination Conditions

- Several *sufficient* conditions for chase termination are known.

- But they don't cover sets of basic database constraints like
 - inclusion dependencies
 - foreign key constraints
Guarded Tgds?
Guarded Tgds
(Calì, Gottlob, Kifer '08)

Tgds of the following form:

\[
R_1(\bar{x}_1) \land \cdots \land R_k(\bar{x}_k) \rightarrow \exists \bar{z} \ S_1(\bar{y}_1) \land \cdots \land S_l(\bar{y}_l)
\]

Has one atom containing all the variables in the body.

Examples:

- \[R(y, z, x) \land E(x, y) \land P(z) \rightarrow \exists u \ R(x, z, u) \land P(u) \]
- all inclusion dependencies
Query Answering under Guarded Tgds

Theorem (Calì, Gottlob, Kifer '08)

Let Σ be a set of guarded tgds and Q a Boolean conjunctive query.

Testing whether Q is true in all models of a given database and Σ is in PTIME.
Main Result

Theorem (H., 2012)

Let Σ be a set of guarded tgds. The following problem is in PTIME:

Input: Database D

Task: Decide whether there is a universal model for D and Σ. If so, compute one.
Guarded Chase Forests
(Calì, Gottlob, Kifer '08)

\[\Sigma: \quad R(x, y) \land P(x) \rightarrow \exists z \ S(y, z) \]

\[S(y, z) \rightarrow P(z) \]

\[S(y, z) \rightarrow \exists u \ R(z, u) \]

\(D = \{ \, R(a,b), \, P(a) \, \} \)
Main Lemma

There is a number k (depends only on Σ) s.t.

- There is a universal model of D and Σ iff
- The first k levels of the guarded chase forest contain such a model.
Proof Overview

Guarded chase forest for D and Σ

Pieces of the universal model

Smallest subforest enclosing the model
Proof Overview

Nodes belonging to the universal model

Guarded chase forest for D and Σ

Step 1: Bound number of red/black nodes on each path.
Step 2: Bound number of nodes “in between”.

Branch nodes
Summary

• Universal models under guarded tgds can be computed in polynomial time (data complexity)
 – We may add certain key constraints, and negative constraints
 – Extension to input databases with nulls
 – Extends to weak universal models (not with keys)

• Open:
 – Combined complexity
 – Weak universal models under guarded tgds + keys
 – Better algorithms for special cases