Learning Script
Knowledge from the Web

Natural Language Processing Seminar - Fall 2014
Lena Reed, PaUlo GomeS and Kendall Lewis
Introduction

- Script: “a standardized sequence of events that describes some stereotypical human activity such as going to a restaurant or visiting a doctor” (Barr and Feigenbaum, 1981)
- Event sequence descriptions (ESDs): temporal event structure that focuses on a single scenario.
- Goal is to create a *temporal script graph* by aligning and combining the ESDs.
Related Work

- Differences:
 - Acquires specific scripts from arbitrary domains
 - Control level of granularity
 - Their data will be more explicit which should be easier to learn from
 - Automatically learns different phrases that represent the same event
Scripts

- Scenarios - classes of human activities
- Events - must occur in a certain order
- Modeling and learning temporal order
 - directed graph $G_s = (E_s, T_s)$
 - E_s - set of nodes representing events of scenario s
 - T_s - set of edges (e_i, e_k) indicating e_i typically happens before e_k in s
Data

- 22 scenarios
 - harder to describe scenarios
 - highly variable order
 - cultural differences

- Used MTurk to create ESDs
 - Bullet point style
 - 5 - 16 events per scenario
 - Can skip scenarios

- Collected 493 ESDs, discarded 15%
- Average 9 events per ESD, widely variable length
- 93% of individual events are unique
Algorithm takes sequences, a cost function for substitutions (alignments), and gap costs for insertions and deletions.

Multiple Sequence Alignment is a matrix
- If a row contains two non-gaps, those symbols are aligned
- Aligning a non-gap with a gap is an insertion or deletion
- Sum the alignment cost for any two symbols from Σ that are aligned with each other and add the gap cost for each gap
Semantic similarity

- Intuitively, want the MSA to prefer the alignment of two phrases if they are semantically similar

- **Predicate** = first potential verb of the phrase
- **Subject** = the preceding noun (if any)
- **Objects** = all following potential nouns
- Calculate similarity as:
 \[sim = \alpha \cdot \text{pred} + \beta \cdot \text{subj} + \gamma \cdot \text{obj} \]

- If a constituent is not present in one of the phrases, set its weight to zero and redistribute it over the other weights
Semantic similarity

- Individual similarity values fixed depending on the WordNet relation between the most similar WordNet senses of the respective lemmas
- Optimized the similarity values and weights using a held-out development set of scenarios
 - Set α higher than other weights since the verb contributes most to the similarity
 - If verb contributes little to the meaning of the phrase, it’s assigned a lower α
Building Graphs

- Construct an initial graph with one node for each row of the MSA
- Add an edge \((u,v)\) to the graph following some constraints
- Graph is automatically post-processed:
 - Prune spurious nodes that contain only one event description (i.e. was the only non-gap in a row in the MSA)
 - Merge nodes whose elements should have been aligned previously by were missed by the MSA
 - Must satisfy certain structural and semantic constraints in order to be merged
- Output of post-processing step is the *temporal script graph* (TSG)
Evaluation Methodology

- 10 scenarios: 5 crowd sourced and 5 from OMICS [Singh et al., 2002].
- Tasks
 - paraphrase: 30 system aligned and 30 random.
 - happens-before: 30 system sequential, 30 random and 60 in reverse.
- 5 turkers annotated, expert decides in 3:2 situations.
Baselines & Upper Bound

- **Clustering** (*cl*):
 - paraphrase if in the same cluster.
 - happens-before *e*-f if some event from *e*’s cluster precedes some event from *f*’s cluster.
- **Levenshtein** (*lev*): string distance for similarity and node merging.
- **Upper Bound** (*upper*): random human annotation for each pair.
| SCENARIO | | SCENARIO | | | |
|---|---|---|---|---|---|
| **MC-TEK** | | **OMIN** | |
| **sys** | **base_cdt** | **base_clev** | **sys** | **base_cdt** | **base_clev** |
| pay with credit card | 0.52 0.43 0.50 | 0.84 0.89 0.11 | 0.64 0.58 0.17 | 0.60 | |
| eat in restaurant | 0.70 0.42 0.75 | 0.88 1.00 0.25 | 0.78 0.59 0.38 | 0.79 | |
| iron clothes I | 0.52 0.32 1.00 | 0.94 1.00 0.12 | 0.67 0.48 0.21 | 0.82 | |
| cook scrambled eggs | 0.58 0.34 0.50 | 0.86 0.95 0.10 | 0.69 0.50 0.16 | 0.91 | |
| take a bus | 0.65 0.42 0.40 | 0.87 1.00 0.09 | 0.74 0.59 0.14 | 0.88 | |
| **OMIN** | | **OMIN** | |
| answer the phone | 0.93 0.45 0.70 | 0.85 1.00 0.21 | 0.89 0.71 0.33 | 0.79 | |
| buy from vending machine | 0.59 0.43 0.59 | 0.83 1.00 0.54 | 0.69 0.60 0.57 | 0.80 | |
| iron clothes II | 0.57 0.30 0.33 | 0.94 1.00 0.22 | 0.71 0.46 0.27 | 0.77 | |
| make coffee | 0.50 0.27 0.56 | 0.94 1.00 0.31 | 0.65 0.42 0.40 | 0.82 | |
| make omelette | 0.75 0.54 0.67 | 0.92 0.96 0.23 | 0.83 0.69 0.34 | 0.85 | |
| **AVERAGE** | **0.63 0.40 0.60** | **0.89 0.98 0.22** | **0.73 0.56 0.30** | **0.82** | |

Figure 4: Results for paraphrasing task; significance of difference to sys: ⋄ : p ≤ 0.01, ● : p ≤ 0.1

SCENARIO		SCENARIO			
MC-TEK		**OMIN**			
sys	**base_cdt**	**base_clev**	**sys**	**base_cdt**	**base_clev**
pay with credit card	0.86 0.49 0.65	0.84 0.74 0.45	0.85 0.59 0.53	0.92	
eat in restaurant	0.78 0.48 0.68	0.84 0.98 0.75	0.81 0.64 0.71	0.95	
iron clothes I	0.78 0.54 0.75	0.72 0.95 0.53	0.75 0.69 0.62	0.92	
cook scrambled eggs	0.67 0.54 0.55	0.64 0.98 0.69	0.66 0.70 0.61	0.88	
take a bus	0.80 0.49 0.68	0.80 1.00 0.37	0.80 0.66 0.48	0.96	
OMIN		**OMIN**			
answer the phone	0.83 0.48 0.79	0.86 1.00 0.96	0.84 0.64 0.87	0.90	
buy from vending machine	0.84 0.51 0.69	0.85 0.90 0.75	0.84 0.66 0.71	0.83	
iron clothes II	0.78 0.48 0.75	0.80 0.96 0.66	0.79 0.64 0.70	0.84	
make coffee	0.70 0.55 0.50	0.78 1.00 0.55	0.74 0.71 0.53	0.83	
make omelette	0.70 0.55 0.79	0.83 0.93 0.82	0.76 0.69 0.81	0.92	
AVERAGE	**0.77 0.51 0.68**	**0.80 0.95 0.65**	**0.78 0.66 0.66**	**0.90**	

Figure 5: Results for happens-before task; significance of difference to sys: ⋄ : p ≤ 0.01, ● : p ≤ 0.1

Results
Summary

- Learn generalized scripts of everyday life scenarios.
- Approach
 - Crowdsource event sequence descriptions.
 - Minimize cost of aligning them with MSA.
 - Construct graph representing the temporal dependencies using semantic and structural constraints.
- Better F1 scores on average than chosen baselines.
Discussion