Section 4.2 Linearity Property

4.1 Calculate the current i_o in the current of Fig. 4.69. What does this current become when the input voltage is raised to 10 V?

![Figure 4.69](image)

For Prob. 4.1.

4.2 Using Fig. 4.70, design a problem to help other students better understand linearity.

![Figure 4.70](image)

For Prob. 4.2.

4.3 (a) In the circuit of Fig. 4.71, calculate v_o and i_o when $v_s = 1$ V.
(b) Find v_o and i_o when $v_s = 10$ V.
(c) What are v_o and i_o when each of the 1-Ω resistors is replaced by a 10-Ω resistor and $v_s = 10$ V?

![Figure 4.71](image)

For Prob. 4.3.

4.4 Use linearity to determine i_o in the circuit of Fig. 4.72.

![Figure 4.72](image)

For Prob. 4.4.

4.5 For the circuit in Fig. 4.73, assume $v_o = 1$ V, and use linearity to find the actual value of v_o.

![Figure 4.73](image)

For Prob. 4.5.

4.6 For the linear circuit shown in Fig. 4.74, use linearity to complete the following table.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>V_s</th>
<th>V_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12 V</td>
<td>4 V</td>
</tr>
<tr>
<td>2</td>
<td>16 V</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 V</td>
<td>-2 V</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Figure 4.74](image)

For Prob. 4.6.

4.7 Use linearity and the assumption that $V_o = 1$ V to find the actual value of V_o in Fig. 4.75.

![Figure 4.75](image)

For Prob. 4.7.

Section 4.3 Superposition

4.8 Using superposition, find V_o in the circuit of Fig. 4.76.

![Figure 4.76](image)

For Prob. 4.8.
4.9 Use superposition to find v_o in the circuit of Fig. 4.77.

4.10 Using Fig. 4.78, design a problem to help other students better understand superposition. Note, the letter k is a gain you can specify to make the problem easier to solve but must not be zero.

4.11 Use the superposition principle to find i_o and v_o in the circuit of Fig. 4.79.

4.12 Determine v_o in the circuit of Fig. 4.80 using the superposition principle.

4.13 Use superposition to find v_o in the circuit of Fig. 4.81.

4.14 Apply the superposition principle to find v_o in the circuit of Fig. 4.82.

4.15 For the circuit in Fig. 4.83, use superposition to find i_o. Calculate the power delivered to the 3Ω resistor.

4.16 Given the circuit in Fig. 4.84, use superposition to get i_o.

Figure 4.77
For Prob. 4.9.

Figure 4.78
For Prob. 4.10.

Figure 4.79
For Prob. 4.11.

Figure 4.80
For Probs. 4.12 and 4.35.

Figure 4.81
For Prob. 4.13.

Figure 4.82
For Prob. 4.14.

Figure 4.83
For Probs. 4.15 and 4.56.

Figure 4.84
For Prob. 4.16.
4.17 Use superposition to obtain v_x in the circuit of Fig. 4.85. Check your result using PSpice.

- **Figure 4.85**
 - For Prob. 4.17.

4.18 Use superposition to find V_o in the circuit of Fig. 4.86.

- **Figure 4.86**
 - For Prob. 4.18.

4.19 Use superposition to solve for v_x in the circuit of Fig. 4.87.

- **Figure 4.87**
 - For Prob. 4.19.

Section 4.4 Source Transformation

4.20 Use source transformations to reduce the circuit in Fig. 4.88 to a single voltage source in series with a single resistor.

- **Figure 4.88**
 - For Prob. 4.20.

4.21 Using Fig. 4.89, design a problem to help other students better understand source transformation.

- **Figure 4.89**
 - For Prob. 4.21.

4.22 For the circuit in Fig. 4.90, use source transformation to find i.

- **Figure 4.90**
 - For Prob. 4.22.

4.23 Referring to Fig. 4.91, use source transformation to determine the current and power in the 8-Ω resistor.

- **Figure 4.91**
 - For Prob. 4.23.

4.24 Use source transformation to find the voltage V_L in the circuit of Fig. 4.92.

- **Figure 4.92**
 - For Prob. 4.24.
Sections 4.5 and 4.6 Thevenin’s and Norton’s Theorems

4.33 Determine R_{TH} and V_{TH} at terminals 1-2 of each of the circuits in Fig. 4.101.

\[\begin{align*}
10 \Omega & \\
20 \Omega & \\
40 \Omega & \\
10 \Omega & \\
\end{align*} \]

(a)

\[\begin{align*}
60 \Omega & \\
2 \Omega & \\
30 \Omega & \\
\end{align*} \]

(b)

Figure 4.101
For Probs. 4.33 and 4.46.

4.34 Using Fig. 4.102, design a problem that will help other students better understand Thevenin equivalent circuits.

\[\begin{align*}
I & \\
R_1 & \\
R_2 & \\
R_3 & \\
V & \\
\end{align*} \]

Figure 4.102
For Probs. 4.34 and 4.49.

4.35 Use Thevenin’s theorem to find V_o in Prob. 4.12.

4.36 Solve for the current i in the circuit of Fig. 4.103 using Thevenin’s theorem. (Hint: Find the Thevenin equivalent seen by the 12-Ω resistor.)

\[\begin{align*}
10 \Omega & \\
12 \Omega & \\
40 \Omega & \\
50 \Omega & \\
\end{align*} \]

Figure 4.103
For Prob. 4.36.

4.37 Find the Norton equivalent with respect to terminals a-b in the circuit shown in Fig. 4.104.

\[\begin{align*}
3 \text{ A} & \\
20 \Omega & \\
180 \Omega & \\
\end{align*} \]

Figure 4.104
For Prob. 4.37.

4.38 Apply Thevenin’s theorem to find V_o in the circuit of Fig. 4.105.

\[\begin{align*}
4 \Omega & \\
1 \Omega & \\
3 \text{ A} & \\
16 \Omega & \\
10 \Omega & \\
5 \Omega & \\
10 \Omega & \\
8 \text{ V} & \\
\end{align*} \]

Figure 4.105
For Prob. 4.38.

4.39 Obtain the Thevenin equivalent at terminals a-b of the circuit in Fig. 4.106.

\[\begin{align*}
1 \text{ A} & \\
10 \Omega & \\
16 \Omega & \\
10 \Omega & \\
5 \Omega & \\
8 \text{ V} & \\
\end{align*} \]

Figure 4.106
For Prob. 4.39.

4.40 Find the Thevenin equivalent at terminals a-b of the circuit in Fig. 4.107.

\[\begin{align*}
+ V_o & \\
10 \text{ kΩ} & \\
20 \text{ kΩ} & \\
70 \text{ V} & \\
\end{align*} \]

Figure 4.107
For Prob. 4.40.
4.41 Find the Thevenin and Norton equivalents at terminals $a-b$ of the circuit shown in Fig. 4.108.

![Figure 4.108](image)

For Prob. 4.41.

4.42 For the circuit in Fig. 4.109, find the Thevenin equivalent between terminals a and b.

![Figure 4.109](image)

For Prob. 4.42.

4.43 Find the Thevenin equivalent looking into terminals $a-b$ of the circuit in Fig. 4.110 and solve for i_x.

![Figure 4.110](image)

For Prob. 4.43.

4.44 For the circuit in Fig. 4.111, obtain the Thevenin equivalent as seen from terminals:

(a) $a-b$

(b) $b-c$

![Figure 4.111](image)

For Prob. 4.44.

* An asterisk indicates a challenging problem.

4.45 Find the Norton equivalent of the circuit in Fig. 4.112.

![Figure 4.112](image)

For Prob. 4.45.

4.46 Using Fig. 4.113, design a problem to help other students better understand Norton equivalent circuits.

![Figure 4.113](image)

For Prob. 4.46.

7.47 Obtain the Thevenin and Norton equivalent circuits of the circuit in Fig. 4.114 with respect to terminals a and b.

![Figure 4.114](image)

For Prob. 4.47.

4.48 Determine the Norton equivalent at terminals $a-b$ for the circuit in Fig. 4.115.

![Figure 4.115](image)

For Prob. 4.48.

4.49 Find the Norton equivalent looking into terminals $a-b$ of the circuit in Fig. 4.102. Let $V = 40 \text{ V}$, $I = 3 \text{ A}$, $R_1 = 10 \Omega$, $R_2 = 40 \Omega$, and $R_3 = 20 \Omega$.

![Image](image)
4.50 Obtain the Norton equivalent of the circuit in Fig. 4.116 to the left of terminals \(a-b \). Use the result to find current \(i \).

![Figure 4.116](image)

For Prob. 4.50.

4.51 Given the circuit in Fig. 4.117, obtain the Norton equivalent as viewed from terminals:

(a) \(a-b \)

(b) \(c-d \)

![Figure 4.117](image)

For Prob. 4.51.

4.52 For the transistor model in Fig. 4.118, obtain the Thevenin equivalent at terminals \(a-b \).

![Figure 4.118](image)

For Prob. 4.52.

4.53 Find the Norton equivalent at terminals \(a-b \) of the circuit in Fig. 4.119.

![Figure 4.119](image)

For Prob. 4.53.

4.54 Find the Thevenin equivalent between terminals \(a-b \) of the circuit in Fig. 4.120.

![Figure 4.120](image)

For Prob. 4.54.

4.55 Obtain the Norton equivalent at terminals \(a-b \) of the circuit in Fig. 4.121.

![Figure 4.121](image)

For Prob. 4.55.

4.56 Use Norton's theorem to find \(V_o \) in the circuit of Fig. 4.122.

![Figure 4.122](image)

For Prob. 4.56.

4.57 Obtain the Thevenin and Norton equivalent circuits at terminals \(a-b \) for the circuit in Fig. 4.123.

![Figure 4.123](image)

For Probs. 4.57 and 4.79.
Section 4.8 Maximum Power Transfer

4.66 Find the maximum power that can be delivered to the resistor R in the circuit of Fig. 4.132.

Figure 4.132
For Prob. 4.66.

4.67 The variable resistor R in Fig. 4.133 is adjusted until it absorbs the maximum power from the circuit.
(a) Calculate the value of R for maximum power.
(b) Determine the maximum power absorbed by R.

Figure 4.133
For Prob. 4.67.

*4.68 Compute the value of R that results in maximum power transfer to the 10-Ω resistor in Fig. 4.134. Find the maximum power.

Figure 4.134
For Prob. 4.68.

4.69 Find the maximum power transferred to resistor R in the circuit of Fig. 4.135.

Figure 4.135
For Prob. 4.69.

4.70 Determine the maximum power delivered to the variable resistor R shown in the circuit of Fig. 4.136.

Figure 4.136
For Prob. 4.70.

4.71 For the circuit in Fig. 4.137, what resistor connected across terminals $a-b$ will absorb maximum power from the circuit? What is that power?

Figure 4.137
For Prob. 4.71.

4.72 (a) For the circuit in Fig. 4.138, obtain the Thevenin equivalent at terminals $a-b$.
(b) Calculate the current in $R_L = 8 \Omega$.
(c) Find R_L for maximum power deliverable to R_L.
(d) Determine that maximum power.

Figure 4.138
For Prob. 4.72.