6.6 In Fig. 6.43, if \(i = \cos 4t \) and \(v = \sin 4t \), the element is:
(a) a resistor (b) a capacitor (c) an inductor

![Figure 6.43](image)

For Review Question 6.6.

6.7 A 5-H inductor changes its current by 3 A in 0.2 s. The voltage produced at the terminals of the inductor is:
(a) 75 V (b) 8.888 V
(c) 3 V (d) 1.2 V

6.8 If the current through a 10-mH inductor increases from zero to 2 A, how much energy is stored in the inductor?
(a) 40 mJ (b) 20 mJ
(c) 10 mJ (d) 5 mJ

6.9 Inductors in parallel can be combined just like resistors in parallel.
(a) True (b) False

6.10 For the circuit in Fig. 6.44, the voltage divider formula is:
(a) \(v_1 = \frac{L_1 + L_2}{L_1} v_i \) (b) \(v_1 = \frac{L_1 + L_2}{L_2} v_i \)
(c) \(v_1 = \frac{L_2}{L_1 + L_2} v_i \) (d) \(v_1 = \frac{L_1}{L_1 + L_2} v_i \)

![Figure 6.44](image)

For Review Question 6.10.

Answers: 6.1a, 6.2d, 6.3d, 6.4b, 6.5c, 6.6b, 6.7a, 6.8, 6.9a, 6.10d.

Problems

Section 6.2 Capacitors

6.1 If the voltage across a 5-F capacitor is \(2te^{-3t} \) V, find the current and the power.

6.2 A 20-\(\mu \)F capacitor has energy \(u(t) = 10 \cos^2 37\pi t \) J. Determine the current through the capacitor.

6.3 Design a problem to help other students better understand how capacitors work.

6.4 A current of 6 \(\sin 4t \) A flows through a 2-F capacitor. Find the voltage \(v(t) \) across the capacitor given that \(v(0) = 1 \) V.

6.5 The voltage across a 4-\(\mu \)F capacitor is shown in Fig. 6.45. Find the current waveform.

![Figure 6.45](image)

For Prob. 6.5.

6.6 The voltage waveform in Fig. 6.46 is applied across a 30-\(\mu \)F capacitor. Draw the current waveform through it.

![Figure 6.46](image)

For Prob. 6.6.

6.7 At \(t = 0 \), the voltage across a 50-mF capacitor is 11 V. Calculate the voltage across the capacitor for \(t > 0 \) when current \(4t \) mA flows through it.

6.8 A 4-mF capacitor has the terminal voltage
\[
v = \begin{cases}
50 \text{ V}, & t \leq 0 \\
Ae^{-100t} + Be^{-500t} \text{ V}, & t \geq 0
\end{cases}
\]
If the capacitor has an initial current of 2 A, find:
(a) the constants \(A \) and \(B \),
(b) the energy stored in the capacitor at \(t = 0 \),
(c) the capacitor current for \(t > 0 \).
6.33 Obtain the Thevenin equivalent at the terminals, a–b, of the circuit shown in Fig. 6.65. Please note that Thevenin equivalent circuits do not generally exist for circuits involving capacitors and resistors. This is a special case where the Thevenin equivalent circuit does exist.

![Figure 6.65](image)

For Prob. 6.33.

Section 6.4 Inductors

6.34 The current through a 10-mH inductor is $6e^{-t/2}$ A. Find the voltage and the power at $t = 3$ s.

6.35 An inductor has a linear change in current from 50 mA to 100 mA in 2 ms and induces a voltage of 160 mV. Calculate the value of the inductor.

6.36 Design a problem to help other students better understand how inductors work.

6.37 The current through a 12-mH inductor is $4 \sin 100t$ A. Find the voltage across the inductor for $0 < t < \pi/200$ s, and the energy stored at $t = \pi/100$ s.

6.38 The current through a 40-mH inductor is

$$i(t) = \begin{cases} 0, & t < 0 \\ te^{-2t} A, & t > 0 \end{cases}$$

Find the voltage $v(t)$.

6.39 The voltage across a 200-mH inductor is given by

$$v(t) = 3t^2 + 2t + 4 \text{ V}$$

for $t > 0$.

Determine the current $i(t)$ through the inductor. Assume that $i(0) = 1$ A.

6.40 The current through a 10-mH inductor is shown in Fig. 6.66. Determine the voltage across the inductor at $t = 1$, 3, and 5 ms.

![Figure 6.66](image)

For Prob. 6.40.

6.41 The voltage across a 2-H inductor is $20(1 - e^{-2t})$ V. If the initial current through the inductor is 0.3 A, find the current and the energy stored in the inductor at $t = 1$ s.

6.42 If the voltage waveform in Fig. 6.67 is applied across the terminals of a 10-H inductor, calculate the current through the inductor. Assume $i(0) = -1$ A.

![Figure 6.67](image)

For Prob. 6.42.

6.43 The current in an 80-mH inductor increases from 0 to 60 mA. How much energy is stored in the inductor?

6.44 A 100-mH inductor is connected in parallel with a 2-kΩ resistor. The current through the inductor is $i(t) = 50e^{-400t}$ mA. (a) Find the voltage v_L across the inductor. (b) Find the voltage v_R across the resistor. (c) Does $v_R(t) + v_L(t) = 0$? (d) Calculate the energy in the inductor at $t = 0$.

6.45 If the voltage waveform in Fig. 6.68 is applied to a 50-mH inductor, find the inductor current $i(t)$. Assume $i(0) = 0$.

![Figure 6.68](image)

For Prob. 6.45.

6.46 Find v_C, i_L, and the energy stored in the capacitor and inductor in the circuit of Fig. 6.69 under dc conditions.

![Figure 6.69](image)

For Prob. 6.46.
6.61 Consider the circuit in Fig. 6.83. Find: (a) \(I_{eq} \), \(i(t) \), and \(i_2(t) \) if \(i_1 = 3e^{-3t} \) mA, (b) \(V_{dc} \), (c) energy stored in the 20-mH inductor at \(t = 1 \) s.

![Figure 6.83](image)

For Prob. 6.61.

6.62 Consider the circuit in Fig. 6.84. Given that \(v(t) = 12e^{-3t} \) mV for \(t > 0 \) and \(i(0) = -10 \) mA, find: (a) \(i_2(0) \), (b) \(i_1(t) \) and \(i_2(t) \).

![Figure 6.84](image)

For Prob. 6.62.

6.63 In the circuit of Fig. 6.85, sketch \(v_o \).

![Figure 6.85](image)

For Prob. 6.63.

6.64 The switch in Fig. 6.86 has been in position \(A \) for a long time. At \(t = 0 \), the switch moves from position \(A \) to \(B \). The switch is a make-before-break type so that there is no interruption in the inductor current. Find: (a) \(i(t) \) for \(t < 0 \), (b) \(v \) just after the switch has been moved to position \(B \), (c) \(v(t) \) long after the switch is in position \(B \).

![Figure 6.86](image)

For Prob. 6.64.

6.65 The inductors in Fig. 6.87 are initially charged and are connected to the black box at \(t = 0 \). If \(i_1(0) = 4 \) A, \(i_2(0) = -2 \) A, and \(v(t) = 50e^{-2t} \) mV, \(t \geq 0 \), find:

- (a) the energy initially stored in each inductor,
- (b) the total energy delivered to the black box from \(t = 0 \) to \(t = \infty \),
- (c) \(i_1(t) \) and \(i_2(t) \), \(t \geq 0 \),
- (d) \(i(t) \), \(t \geq 0 \).

![Figure 6.87](image)

For Prob. 6.65.

6.66 The current \(i(t) \) through a 40-mH inductor is equal, in magnitude, to the voltage across it for all values of time. If \(i(0) = 5 \) A, find \(i(t) \).

Section 6.6 Applications

6.67 An op amp integrator has \(R = 100 \) kΩ and \(C = 0.01 \) µF. If the input voltage is \(v_i = 10 \sin 50t \) mV, obtain the output voltage.
6.68 A 10-V dc voltage is applied to an integrator with \(R = 50 \text{ k}\Omega \), \(C = 100 \mu\text{F} \) at \(t = 0 \). How long will it take for the op amp to saturate if the saturation voltages are +12 V and -12 V? Assume that the initial capacitor voltage was zero.

6.69 An op amp integrator with \(R = 4 \text{ M}\Omega \) and \(C = 1 \mu\text{F} \) has the input waveform shown in Fig. 6.88. Plot the output waveform.

![Figure 6.88](image)

Figure 6.88
For Prob. 6.69.

6.70 Using a single op amp, a capacitor, and resistors of \(100 \text{ k}\Omega \) or less, design a circuit to implement

\[
v_o = -50 \int_0^t v_i(t) \, dt
\]

Assume \(v_o = 0 \) at \(t = 0 \).

6.71 Show how you would use a single op amp to generate

\[
v_o = -\int_0^t (v_1 + 4v_2 + 10v_3) \, dt
\]

If the integrating capacitor is \(C = 2 \mu\text{F} \), obtain the other component values.

6.72 At \(t = 1.5 \text{ ms} \), calculate \(v_o \) due to the cascaded integrators in Fig. 6.89. Assume that the integrators are reset to 0 V at \(t = 0 \).

![Figure 6.89](image)

Figure 6.89
For Prob. 6.72.

6.73 Show that the circuit in Fig. 6.90 is a noninverting integrator.

![Figure 6.90](image)

Figure 6.90
For Prob. 6.73.

6.74 The triangular waveform in Fig. 6.91(a) is applied to the input of the op amp differentiator in Fig. 6.91(b). Plot the output.

![Figure 6.91](image)

Figure 6.91
For Prob. 6.74.

6.75 An op amp differentiator has \(R = 250 \text{ k}\Omega \) and \(C = 10 \mu\text{F} \). The input voltage is a ramp \(r(t) = 12t \text{ mV} \). Find the output voltage.

6.76 A voltage waveform has the following characteristics: a positive slope of 20 V/s for 5 ms followed by a negative slope of 10 V/s for 10 ms. If the waveform is applied to a differentiator with \(R = 50 \text{ k}\Omega \), \(C = 10 \mu\text{F} \), sketch the output voltage waveform.
7.4 The switch in Fig. 7.84 has been in position A for a long time. Assume the switch moves instantaneously from A to B at \(t = 0 \). Find \(v \) for \(t > 0 \).

Figure 7.84
For Prob. 7.4.

7.5 Using Fig. 7.85, design a problem to help other students understand source-free RC circuits.

Figure 7.85
For Prob. 7.5.

7.6 The switch in Fig. 7.86 has been closed for a long time, and it opens at \(t = 0 \). Find \(v(t) \) for \(t \geq 0 \).

Figure 7.86
For Prob. 7.6.

7.7 Assuming that the switch in Fig. 7.87 has been in position A for a long time and is moved to position B at \(t = 0 \), find \(v_c(t) \) for \(t > 0 \).

Figure 7.87
For Prob. 7.7.

7.8 For the circuit in Fig. 7.88, if
\[
\nu = 10e^{-4t} \text{ V} \quad \text{and} \quad i = 0.2 e^{-4t} \text{ A}, \quad t > 0
\]

(a) Find \(R \) and \(C \).

(b) Determine the time constant.

(c) Calculate the initial energy in the capacitor.

(d) Obtain the time it takes to dissipate 50 percent of the initial energy.

Figure 7.88
For Prob. 7.8.

7.9 The switch in Fig. 7.89 opens at \(t = 0 \). Find \(v_c \) for \(t > 0 \).

Figure 7.89
For Prob. 7.9.

7.10 For the circuit in Fig. 7.90, find \(v_a(t) \) for \(t > 0 \).

Determine the time necessary for the capacitor voltage to decay to one-third of its value at \(t = 0 \).

Figure 7.90
For Prob. 7.10.

Section 7.3 The Source-Free RL Circuit

7.11 For the circuit in Fig. 7.91, find \(i_o \) for \(t > 0 \).

Figure 7.91
For Prob. 7.11.
For the circuit in Fig. 7.100,
\[v = 150e^{-50t} \text{ V} \]
and
\[i = 30e^{-50t} \text{ A}, \quad t > 0 \]
(a) Find L and R.
(b) Determine the time constant.
(c) Calculate the initial energy in the inductor.
(d) What fraction of the initial energy is dissipated in 10 ms?

Figure 7.100
For Prob. 7.20.

In the circuit of Fig. 7.101, find the value of R for which the steady-state energy stored in the inductor will be 0.25 J.

Figure 7.101
For Prob. 7.21.

Find \(i(t) \) and \(v(t) \) for \(t > 0 \) in the circuit of Fig. 7.102 if \(i(0) = 20 \text{ A} \).

Figure 7.102
For Prob. 7.22.

Consider the circuit in Fig. 7.103. Given that \(v_a(0) = 2 \text{ V} \), find \(v_a \) and \(v_x \) for \(t > 0 \).

Figure 7.103
For Prob. 7.23.

Section 7.4 Singularity Functions

7.24 Express the following signals in terms of singularity functions.

(a) \(v(t) = \begin{cases} 0, & t < 0 \\ -5, & t > 0 \end{cases} \)

(b) \(i(t) = \begin{cases} 0, & t < 1 \\ -10, & 1 < t < 3 \\ 10, & 3 < t < 5 \\ 0, & t > 5 \end{cases} \)

(c) \(x(t) = \begin{cases} t - 1, & 1 < t < 2 \\ 1, & 2 < t < 3 \\ 4 - t, & 3 < t < 4 \\ 0, & \text{ Otherwise} \end{cases} \)

(d) \(y(t) = \begin{cases} 2, & t < 0 \\ -5, & 0 < t < 1 \\ 0, & t > 1 \end{cases} \)

7.25 Design a problem to help other students better understand singularity functions.

7.26 Express the signals in Fig. 7.104 in terms of singularity functions.

Figure 7.104
For Prob. 7.26.

7.27 Express \(v(t) \) in Fig. 7.105 in terms of step functions.
7.44 The switch in Fig. 7.111 has been in position a for a long time. At \(t = 0 \), it moves to position b. Calculate \(i(t) \) for all \(t > 0 \).

![Figure 7.111](image)

For Prob. 7.44.

7.45 Find \(v_o \) in the circuit of Fig. 7.112 when \(v_i = 6u(t) \). Assume that \(v_o(0) = 1 \text{ V} \).

![Figure 7.112](image)

For Prob. 7.45.

7.46 For the circuit in Fig. 7.113, \(i_S(t) = 5u(t) \). Find \(v(t) \).

![Figure 7.113](image)

For Prob. 7.46.

7.47 Determine \(v(t) \) for \(t > 0 \) in the circuit of Fig. 7.114 if \(v(0) = 0 \).

![Figure 7.114](image)

For Prob. 7.47.
7.55 Find \(v(t) \) for \(t < 0 \) and \(t > 0 \) in the circuit of Fig. 7.121.

![Fig. 7.121](image)

For Prob. 7.55.

7.56 For the network shown in Fig. 7.122, find \(v(t) \) for \(t > 0 \).

![Fig. 7.122](image)

For Prob. 7.56.

*7.57 Find \(i_1(t) \) and \(i_2(t) \) for \(t > 0 \) in the circuit of Fig. 7.123.

![Fig. 7.123](image)

For Prob. 7.57.

7.58 Rework Prob. 7.17 if \(i(0) = 10 \text{ A} \) and \(v(t) = 20u(t) \text{ V} \).

7.59 Determine the step response \(u_d(t) \) to \(v_s = 9u(t) \text{ V} \) in the circuit of Fig. 7.124.

![Fig. 7.124](image)

For Prob. 7.59.

7.60 Find \(v(t) \) for \(t > 0 \) in the circuit of Fig. 7.125 if the initial current in the inductor is zero.

![Fig. 7.125](image)

For Prob. 7.60.

7.61 In the circuit of Fig. 7.126, \(i_s \) changes from 5 A to 10 A at \(t = 0 \); that is, \(i_s = (5 + 5u(t)) \text{ A} \). Find \(v \) and \(i \).

![Fig. 7.126](image)

For Prob. 7.61.

7.62 For the circuit in Fig. 7.127, calculate \(i(t) \) if \(i(0) = 0 \).

![Fig. 7.127](image)

For Prob. 7.62.

7.63 Obtain \(v(t) \) and \(i(t) \) in the circuit of Fig. 7.128.

![Fig. 7.128](image)

For Prob. 7.63.

7.64 Find \(v_o(t) \) for \(t > 0 \) in the circuit of Fig. 7.129.

![Fig. 7.129](image)

For Prob. 7.64.
7.65 If the input pulse in Fig. 7.130(a) is applied to the circuit in Fig. 7.130(b), determine the response \(i(t) \).

Figure 7.130
For Prob. 7.65.

Section 7.7 First-order Op Amp Circuits

7.66 Using Fig. 7.131, design a problem to help other students better understand first-order op amp circuits.

Figure 7.131
For Prob. 7.66.

7.67 If \(v(0) = 10 \) V, find \(v_o(t) \) for \(t > 0 \) in the op amp circuit of Fig. 7.132. Let \(R = 10 \) k\(\Omega \) and \(C = 1 \) \(\mu \)F.

Figure 7.132
For Prob. 7.67.

7.68 Obtain \(v_o \) for \(t > 0 \) in the circuit of Fig. 7.133.

Figure 7.133
For Prob. 7.68.

7.69 For the op amp circuit in Fig. 7.134, find \(v_o(t) \) for \(t > 0 \).

Figure 7.134
For Prob. 7.69.

7.70 Determine \(v_o \) for \(t > 0 \) when \(v_s = 20 \) mV in the op amp circuit of Fig. 7.135.

Figure 7.135
For Prob. 7.70.

7.71 For the op amp circuit in Fig. 7.136, suppose \(v_o = 0 \) and \(v_s = 3 \) V. Find \(v(t) \) for \(t > 0 \).

Figure 7.136
For Prob. 7.71.
7.72 Find i_c in the op amp circuit in Fig. 7.137. Assume that $v(0) = -2 \text{ V}$, $R = 10 \text{ k}\Omega$, and $C = 10 \mu\text{F}$.

![Figure 7.137](image)

For Prob. 7.72.

7.73 (Diagram)

For the circuit shown in Fig. 7.138, solve for $i_0(t)$.

![Figure 7.138](image)

For Prob. 7.73.

7.74 Determine $v_o(t)$ for $t > 0$ in the circuit of Fig. 7.139. Let $i_s = 10u(t) \mu\text{A}$ and assume that the capacitor is initially uncharged.

![Figure 7.139](image)

For Prob. 7.74.

7.75 In the circuit of Fig. 7.140, find v_o and i_o, given that $v_s = 4u(t) \text{ V}$ and $v(0) = 1 \text{ V}$.

![Figure 7.140](image)

For Prob. 7.75.

7.76 Repeat Prob. 7.49 using PSpice.

7.77 The switch in Fig. 7.141 opens at $t = 0$. Use PSpice to determine $v(t)$ for $t > 0$.

![Figure 7.141](image)

For Prob. 7.77.

7.78 The switch in Fig. 7.142 moves from position a to b at $t = 0$. Use PSpice to find $i(t)$ for $t > 0$.

![Figure 7.142](image)

For Prob. 7.78.

7.79 In the circuit of Fig. 7.143, the switch has been in position a for a long time but moves instantaneously to position b at $t = 0$. Determine $i_o(t)$.

![Figure 7.143](image)

For Prob. 7.79.

7.80 In the circuit of Fig. 7.144, assume that the switch has been in position a for a long time, find:

(a) $i_1(0)$, $i_2(0)$, and $v_o(0)$

(b) $i_1(t)$

(c) $i_1(\infty)$, $i_2(\infty)$, and $v_o(\infty)$.