Refer to the circuit shown in Fig. 8.64. Calculate:
(a) \(i_L(0^+) \), \(v_C(0^+) \), and \(v_R(0^+) \),
(b) \(di_L(0^+)/dt \), \(dv_C(0^+)/dt \), and \(dv_R(0^+)/dt \),
(c) \(i_L(\infty) \), \(v_C(\infty) \), and \(v_R(\infty) \).

![Figure 8.64](image)

For Prob. 8.3.

In the circuit of Fig. 8.65, find:
(a) \(v(0^+) \) and \(i(0^+) \),
(b) \(dv(0^+)/dt \) and \(di(0^+)/dt \),
(c) \(v(\infty) \) and \(i(\infty) \).

![Figure 8.65](image)

For Prob. 8.4.

Refer to the circuit in Fig. 8.66. Determine:
(a) \(i(0^+) \) and \(v(0^+) \),
(b) \(di(0^+)/dt \) and \(dv(0^+)/dt \),
(c) \(i(\infty) \) and \(v(\infty) \).

![Figure 8.66](image)

For Prob. 8.5.

In the circuit of Fig. 8.67, find:
(a) \(v_R(0^+) \) and \(v_L(0^+) \),
(b) \(dv_R(0^+)/dt \) and \(dv_L(0^+)/dt \),
(c) \(v_R(\infty) \) and \(v_L(\infty) \).

![Figure 8.67](image)

For Prob. 8.6.

Section 8.3 Source-Free Series RLC Circuit

8.7 A series RLC circuit has \(R = 10 \, \text{kΩ} \), \(L = 0.1 \, \text{mH} \), and \(C = 10 \, \text{μF} \). What type of damping is exhibited by the circuit?

8.8 Design a problem to help other students better understand source-free RLC circuits.

8.9 The current in an RLC circuit is described by
\[
\frac{d^2 i}{dt^2} + 10 \frac{di}{dt} + 25i = 0
\]
If \(i(0) = 2 \, \text{A} \) and \(di(0)/dt = 0 \), find \(i(t) \) for \(t > 0 \).

8.10 The differential equation that describes the voltage in an RLC network is
\[
\frac{d^2 v}{dt^2} + 5 \frac{dv}{dt} + 4v = 0
\]
Given that \(v(0) = 0 \), \(dv(0)/dt = 5 \, \text{V/s} \), obtain \(v(t) \).

8.11 The natural response of an RLC circuit is described by the differential equation
\[
\frac{d^2 v}{dt^2} + 2 \frac{dv}{dt} + v = 0
\]
for which the initial conditions are \(v(0) = 20 \, \text{V} \) and \(dv(0)/dt = 0 \). Solve for \(v(t) \).

8.12 If \(R = 20 \, \Omega \), \(L = 0.6 \, \text{H} \), what value of \(C \) will make an RLC series circuit:
(a) overdamped,
(b) critically damped,
(c) underdamped?

8.13 For the circuit in Fig. 8.68, calculate the value of \(R \) needed to have a critically damped response.

![Figure 8.68](image)

For Prob. 8.13.
8.14 The switch in Fig. 8.69 moves from position A to position B at \(t = 0 \) (please note that the switch must connect to point B before it breaks the connection at A, a make-before-break switch). Find \(v(t) \) for \(t > 0 \).

\[30 \Omega \quad \text{A} \quad \text{t=0} \quad 4 \text{H} \]

\[20 \text{V} \quad + \quad \text{v(t)} \quad - \quad 10 \Omega \]

Figure 8.69
For Prob. 8.14.

8.15 The responses of a series RLC circuit are

\[
v_C(t) = 30 - 10e^{-20t} + 30e^{-10t} \text{ V}
\]

\[
i_L(t) = 40e^{-20t} - 60e^{-10t} \text{ mA}
\]

where \(v_C \) and \(i_L \) are the capacitor voltage and inductor current, respectively. Determine the values of \(R, L, \) and \(C \).

8.16 Find \(i(t) \) for \(t > 0 \) in the circuit of Fig. 8.70.

\[10 \Omega \quad \text{t=0} \quad 60 \Omega \]

\[20 \text{V} \quad + \quad 40 \Omega \quad 2.5 \text{H} \]

Figure 8.70
For Prob. 8.16.

8.17 In the circuit of Fig. 8.71, the switch instantaneously moves from position A to B at \(t = 0 \). Find \(v(t) \) for all \(t \geq 0 \).

\[15 \text{A} \quad 4 \Omega \quad 10 \Omega \quad 0.25 \text{H} \]

Figure 8.71
For Prob. 8.17.

8.18 Find the voltage across the capacitor as a function of time for \(t > 0 \) for the circuit in Fig. 8.72. Assume steady-state conditions exist at \(t = 0^- \).

\[5 \Omega \quad r=0 \]

\[20 \text{V} \quad 1 \Omega \quad 0.25 \text{H} \quad 1 \text{F} \]

Figure 8.72
For Prob. 8.18.

8.19 Obtain \(v(t) \) for \(t > 0 \) in the circuit of Fig. 8.73.

\[10 \Omega \quad \text{t=0} \quad 1 \text{F} \]

\[90 \text{V} \quad + \quad 4 \text{H} \]

Figure 8.73
For Prob. 8.19.

8.20 The switch in the circuit of Fig. 8.74 has been closed for a long time but is opened at \(t = 0 \). Determine \(i(t) \) for \(t > 0 \).

\[i(t) \quad \frac{1}{2} \text{H} \quad 2 \Omega \]

\[12 \text{V} \quad + \quad \frac{1}{4} \text{F} \]

Figure 8.74
For Prob. 8.20.

8.21 Calculate \(v(t) \) for \(t > 0 \) in the circuit of Fig. 8.75.

\[15 \Omega \quad 12 \Omega \quad 6 \Omega \quad \frac{3}{15} \text{F} \]

\[24 \text{V} \quad 60 \Omega \quad + \quad \frac{1}{15} \text{F} \]

Figure 8.75
For Prob. 8.21.

* An asterisk indicates a challenging problem.
Section 8.4 Source-Free Parallel RLC Circuit

8.22 Assuming \(R = 2 \, \text{k}\Omega \), design a parallel RLC circuit that has the characteristic equation
\[s^2 + 100s + 10^6 = 0. \]

8.23 For the network in Fig. 8.76, what value of \(C \) is needed to make the response underdamped with unity damping factor (\(\alpha = 1 \))?

![Figure 8.76](image)

For Prob. 8.23.

8.24 The switch in Fig. 8.77 moves from position A to position B at \(t = 0 \) (please note that the switch must connect to point B before it breaks the connection at A, a make-before-break switch). Determine \(i(t) \) for \(t > 0 \).

![Figure 8.77](image)

For Prob. 8.24.

8.25 Using Fig. 8.78, design a problem to help other students better understand source-free RLC circuits.

![Figure 8.78](image)

For Prob. 8.25.

Section 8.5 Step Response of a Series RLC Circuit

8.26 The step response of an RLC circuit is described by
\[\frac{d^2 i}{dt^2} + 2 \frac{di}{dt} + 5i = 10 \]

Given that \(i(0) = 6 \, \text{A} \) and \(di(0)/dt = 12 \, \text{A/s} \), solve for \(i(t) \).

8.27 A branch voltage in an RLC circuit is described by
\[\frac{d^2 v}{dt^2} + 4 \frac{dv}{dt} + 8v = 48 \]

Problems

8.28 A series RLC circuit is described by
\[\frac{d^2 i}{dt^2} + R \frac{di}{dt} + \frac{i}{C} = 2 \]

Find the response when \(L = 0.5 \, \text{H} \), \(R = 4 \, \Omega \), and \(C = 0.2 \, \text{F} \). Let \(i(0) = 1 \), \(di(0)/dt = 0 \).

8.29 Solve the following differential equations subject to the specified initial conditions
(a) \(d^2 v/dt^2 + 4v = 12 \), \(v(0) = 0 \), \(dv(0)/dt = 2 \)
(b) \(d^2 i/dt^2 + 5 di/dt + 4i = 8 \), \(i(0) = -1 \), \(di(0)/dt = 0 \)
(c) \(d^2 v/dt^2 + 2 dv/dt + v = 3 \), \(v(0) = 5 \), \(dv(0)/dt = 1 \)
(d) \(d^2 i/dt^2 + 2 di/dt + 5i = 10 \), \(i(0) = 4 \), \(di(0)/dt = -2 \)

8.30 The step responses of a series RLC circuit are
\[v_C(t) = 40 - 10e^{-2000t} - 10e^{-4000t} \, \text{V}, \quad t > 0 \]
\[i_L(t) = 3e^{-2000t} + 6e^{-4000t} \, \text{mA}, \quad t > 0 \]

(a) Find \(C \). (b) Determine what type of damping is exhibited by the circuit.

8.31 Consider the circuit in Fig. 8.79. Find \(v_L(0^-) \) and \(v_C(0^-) \).

![Figure 8.79](image)

For Prob. 8.31.

8.32 For the circuit in Fig. 8.80, find \(v(t) \) for \(t > 0 \).

![Figure 8.80](image)

For Prob. 8.32.
8.33 Find \(v(t) \) for \(t > 0 \) in the circuit of Fig. 8.81.

![Figure 8.81](image)

For Prob. 8.33.

8.34 Calculate \(i(t) \) for \(t > 0 \) in the circuit of Fig. 8.82.

![Figure 8.82](image)

For Prob. 8.34.

8.35 Using Fig. 8.83, design a problem to help other students better understand the step response of series RLC circuits.

![Figure 8.83](image)

For Prob. 8.35.

8.36 Obtain \(v(t) \) and \(i(t) \) for \(t > 0 \) in the circuit of Fig. 8.84.

![Figure 8.84](image)

For Prob. 8.36.

8.37 For the network in Fig. 8.85, solve for \(i(t) \) for \(t > 0 \).

![Figure 8.85](image)

For Prob. 8.37.

8.38 Refer to the circuit in Fig. 8.86. Calculate \(i(t) \) for \(t > 0 \).

![Figure 8.86](image)

For Prob. 8.38.

8.39 Determine \(v(t) \) for \(t > 0 \) in the circuit of Fig. 8.87.

![Figure 8.87](image)

For Prob. 8.39.

8.40 The switch in the circuit of Fig. 8.88 is moved from position \(a \) to \(b \) at \(t = 0 \). Determine \(i(t) \) for \(t > 0 \).

![Figure 8.88](image)

For Prob. 8.40.
41. For the network in Fig. 8.89, find \(i(t) \) for \(t > 0 \).

![Figure 8.89](For Prob. 8.41)

42. Given the network in Fig. 8.90, find \(v(t) \) for \(t > 0 \).

![Figure 8.90](For Prob. 8.42)

43. The switch in Fig. 8.91 is opened at \(t = 0 \) after the circuit has reached steady state. Choose \(R \) and \(C \) such that \(\alpha = 8 \) Np/s and \(\omega_d = 30 \text{ rad/s} \).

![Figure 8.91](For Prob. 8.43)

44. A series \(RLC \) circuit has the following parameters: \(R = 1 \text{ k}\Omega, L = 1 \text{ H}, \) and \(C = 10 \text{ nF} \). What type of damping does this circuit exhibit?

Section 8.6 Step Response of a Parallel \(RLC \) Circuit

45. In the circuit of Fig. 8.92, find \(v(t) \) and \(i(t) \) for \(t > 0 \). Assume \(v(0) = 0 \text{ V} \) and \(i(0) = 1 \text{ A} \).

![Figure 8.92](For Prob. 8.45)

46. Using Fig. 8.93, design a problem to help other students better understand the step response of a parallel \(RLC \) circuit.

![Figure 8.93](For Prob. 8.46)

47. Find the output voltage \(v_o(t) \) in the circuit of Fig. 8.94.

![Figure 8.94](For Prob. 8.47)

48. Given the circuit in Fig. 8.95, find \(i(t) \) and \(v(t) \) for \(t > 0 \).

![Figure 8.95](For Prob. 8.48)

49. Determine \(i(t) \) for \(t > 0 \) in the circuit of Fig. 8.96.

![Figure 8.96](For Prob. 8.49)