Introduction (20 pts)
[8/8] Written description of lab goals, etc.
[0/3] voltage divider - description, equation, figure
[0/3] KVL - description, equation, figure
[0/3] KCL - description, equation, figure
[0/3] Power - description, equation, figure

Data and Procedure (45 pts)
Part 1 (subsection 1): Resistive Circuits (15)
[1/1] Draw the circuit diagram.
[3/3] Label all resistances, voltages, and currents

TABLE - Resistors
[0/2] difference absolute and percent
[0/1] Notes on measured values and if they fall into the 5% tolerance. References table.

TABLE 2
[0/1] Measured voltage drops: table. calculated vs. measured.
[1/1] Measure currents. Table: calculated vs. measured.

[0/1] Describe KCL, REFERENCE The equation written in the intro., and show the math that verifies it.

Part 1 (subsection 2): Light Bulb Circuits (10)
TABLE
[1/1] Report Measured Resistances off
[1/1] Report Highest voltage values

FIGURE
[1/1] Describe brightnesses in both circuits

TABLE
[1/1] Measurements of current
[1/1] Measurement of voltage
[1/1] calculated resistance.
[1/1] Report differences from initial values.
[1/1] Write power equation. Report power for each bulb in each circuit.

Part 1 (subsection 3): Voltage Divider (10)
[1/1] Draw a diagram.
[0/3] label resistors, voltage source, and trimpot.
[0/2] Calculate voltage drop across trimpot.
[0/2] describe why the resistors you used were chosen.
Part 2 (10)
[1/3] what value of R3 do you need to choose - show math.
[0/1] Compare tuned R3 to calculation.
[0/6] table: lab report values, actual used values, actual measured values, deviation between used and measured values in absolute and relative.

Summary (20 pts)
Comment on differences between expected results from lab given values, available equipment values, actual measured equipment values and actual measurements. Explain any discrepancies and how the experiment could be improved in the future.