Semiconductor Detectors - Photodetectors

- Principle of the pn junction photodiode
- Absorption coefficient and photodiode materials
- Properties of semiconductor detectors
- The pin photodiodes
- Avalanche photodiodes
- Schottky junction photodetector
<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexandra</td>
<td>Stambaugh</td>
<td>Slow Light on Chip</td>
<td>Dec 8th</td>
</tr>
<tr>
<td>Gopikrishnan</td>
<td>Gopalakrishnan Meena</td>
<td>Ring Resonators and Optofluidics</td>
<td>Dec 8th</td>
</tr>
<tr>
<td>Md. Mahmudur</td>
<td>Rahman</td>
<td>Chromatic dispersion in digital coherent receiver</td>
<td>Dec 8th</td>
</tr>
<tr>
<td>Venkateswara</td>
<td>Penumuchu</td>
<td>LEDs Efficiency for Lighting</td>
<td>Dec 8th</td>
</tr>
<tr>
<td>Golam Md. Imran</td>
<td>Hossain</td>
<td>Challenges of hot electron extraction and beyond</td>
<td>Dec 10th</td>
</tr>
<tr>
<td>Jeffery</td>
<td>Bertalotto</td>
<td>WDM (Wavelength-Division Multiplexing)</td>
<td>Dec 10th</td>
</tr>
<tr>
<td>Heather Renee</td>
<td>Sully</td>
<td>Optical Fiber Fabrication</td>
<td>Dec 10th</td>
</tr>
<tr>
<td>Nitish</td>
<td>Padgaonkar</td>
<td>Photovoltaics</td>
<td>Dec 10th</td>
</tr>
<tr>
<td>Can</td>
<td>Gao</td>
<td>Synchronous Digital Hierarchy</td>
<td>Dec 12th</td>
</tr>
<tr>
<td>Avirudh</td>
<td>Kaushik</td>
<td>AMOLED Displays</td>
<td>Dec 12th</td>
</tr>
<tr>
<td>Tianchi</td>
<td>Zeng</td>
<td>Chip Optical Interconnection</td>
<td>Dec 12th</td>
</tr>
</tbody>
</table>
The dark current has **shot noise** or fluctuations about \(I_d \).

\[
i_{n\text{-dark}} = (2eI_d B)^{1/2}
\]

Quantum noise is due to the photon nature of light and its effects are the same as **shot noise**. Photocurrent has quantum noise or shot noise.

\[
i_{n\text{-quantum}} = (2eI_{ph} B)^{1/2}
\]
Noise in Photodiodes

Total shot noise current, i_n

\[i_n^2 = i_{n\text{--dark}}^2 + i_{n\text{--quantum}}^2 \]

\[i_n = [2e(I_d + I_{ph})B]^{1/2} \]

We can conceptually view the photodetector current as

\[I_d + I_{ph} + i_n \]

This flows through a load resistor R_L and voltage across R_L is amplified by A to give V_{out}

The noise voltage (RMS) due to shot noise in PD = $i_n R_L A$
Total current flowing into R_L has three components:

$I_d = \text{Dark current. In principle, we can subtract this or block it with a capacitor if } I_{ph} \text{ is an ac (transient) signal.}$

$I_{ph} = \text{Photocurrent. This is the signal. We need this. It could be a steady or varying (ac or transient) signal.}$

$i_n = \text{Total shot noise. Due to shot noise from } I_d \text{ and } I_{ph}. \text{ We cannot eliminate this.}$
Noise in Photodiodes

The resistor R_L exhibits thermal noise (Johnson noise).

Power in thermal fluctuations in $R_L = 4k_BTB$

\[
\sqrt{i^2} = R_L i^2 = 4k_BTB \quad i = \text{Current in } R_L
\]

\[i_{th} = \text{Thermal noise current from } R_L = \left[\frac{4k_BTB}{R_L}\right]^{1/2}\]
Important Note: Total noise is always found by first summing the average powers involved in individual fluctuations e.g. power in shot noise + power in thermal noise

\[
\text{Power in shot noise in PD} = i_n^2 R_L = [2e(I_d + I_{ph})B]R_L
\]

\[
\text{Power in thermal fluctuations in } R_L = 4k_B T B
\]

Noise in the amplifier \(A \) must also be included

See advanced textbooks
Signal to Noise Ratio

\[\text{SNR} = \frac{\text{Signal Power}}{\text{Noise Power}} \]

\[\text{SNR} = \frac{I_{ph}^2 R_L}{i_n^2 R_L + 4k_B T B} = \frac{I_{ph}^2}{2e(I_d + I_{ph})B} + \frac{4k_B T B}{R_L} \]

Important Note: Total noise is always found by first summing the average powers involved in individual fluctuations e.g. power in shot noise + power in thermal noise.
Noise Equivalent Power

Definition

\[\text{NEP} = \frac{\text{Input power for SNR} = 1}{\sqrt{\text{Bandwidth}}} = \frac{P_1}{B^{1/2}} \]

NEP is defined as the required optical input power to achieve a SNR of 1 within a bandwidth of 1 Hz

\[\text{NEP} = \frac{P_1}{B^{1/2}} = \frac{1}{R} \left[2e(I_d + I_{ph}) \right]^{1/2} \]

Units for NEP are W Hz\(^{-1/2}\)
Noise Equivalent Power

Definition

\[\text{NEP} = \frac{\text{Input power for SNR} = 1}{\sqrt{\text{Bandwidth}}} = \frac{P_1}{B^{1/2}} \]

NEP is defined as the required optical input power to achieve a SNR of 1 within a bandwidth of 1 Hz

\[\text{NEP} = \frac{P_1}{B^{1/2}} = \frac{1}{R} \left[2e(I_d + I_{ph}) \right]^{1/2} \]

Units for NEP are W Hz\(^{-1/2}\)

Detectivity

\[\text{Detectivity} = \frac{1}{\text{NEP}} \]

\[D^* = \frac{A^{1/2}}{\text{NEP}} \]

Specific detectivity \(D^*\) cm Hz\(^{-1/2}\) W\(^{-1}\), or Jones
NEP and Dark Current

Graph showing the relationship between NEP (W/Hz^{1/2}) and dark current (nA). The graph includes data points for different materials and temperatures:
- GaAsP Schottky (25°C)
- InGaAs pin (25°C)
- InGaAs pin (-10°C)
- InGaAs pin (-20°C)
- Si pin (25°C)
- Ge pn

The slope of the line is 1/2.
EXAMPLE: Noise of an ideal photodetector

Consider an ideal photodiode with $\eta_e = 1$ (QE = 100%) and no dark current, $I_d = 0$. Show that the minimum optical power required for a signal to noise ratio (SNR) of 1 is

$$P_1 = \frac{2hc}{\lambda} B$$ \hspace{1cm} (5.12.9)

Calculate the minimum optical power for a SNR = 1 for an ideal photodetector operating at 1300 nm with a bandwidth of 1 GHz? What is the corresponding photocurrent?
EXAMPLE: Noise of an ideal photodetector

Consider an ideal photodiode with $\eta_e = 1$ (QE = 100%) and no dark current, $I_d = 0$. Show that the minimum optical power required for a signal to noise ratio (SNR) of 1 is

$$P_1 = \frac{2hc}{\lambda} B$$ (5.12.9)

Calculate the minimum optical power for a SNR = 1 for an ideal photodetector operating at 1300 nm with a bandwidth of 1 GHz? What is the corresponding photocurrent?

Solution

We need the incident optical power P_I that makes the photocurrent I_{ph} equal to the noise current i_n, so that SNR = 1. The photocurrent (signal) is equal to the noise current when

$$I_{ph} = i_n = [2e(I_d + I_{ph})B]^{1/2} = [2eI_{ph}B]^{1/2}$$

since $I_d = 0$. Solving the above, $I_{ph} = 2eB$

From Eqs. (5.4.3) and (5.4.4), the photocurrent I_{ph} and the incident optical power P_I are related by

$$I_{ph} = \frac{\eta_e e P_I \lambda}{hc} = 2eB$$

Thus,

$$P_I = \frac{2hc}{\eta_e \lambda} B$$
For an ideal photodetector, $\eta_e = 1$ which leads to Eq. (5.12.9). We note that for a bandwidth of 1Hz, NEP is numerically equal to P_1 or $\text{NEP} = 2hc/\lambda$.

For an ideal photodetector operating at 1.3 μm and at 1 GHz,

$$P_1 = \frac{2hcB}{\eta_e \lambda}$$

$$= 2(6.63 \times 10^{-34} \text{ J s})(3 \times 10^8 \text{ m s}^{-1})(10^9 \text{ Hz}) / (1)(1.3 \times 10^{-6} \text{ m})$$

$$= 3.1 \times 10^{-10} \text{ W or } 0.31 \text{ nW}.$$

This is the minimum signal for a SNR = 1. The noise current is due to quantum noise. The corresponding photocurrent is

$$I_{ph} = 2eB = 2(1.6 \times 10^{-19} \text{ C})(10^9 \text{ Hz}) = 3.2 \times 10^{-10} \text{ A or } 0.32 \text{ nA}.$$

Alternatively we can calculate I_{ph} from $I_{ph} = \eta_e eP_1 \lambda / hc$ with $\eta_e = 1$.
EXAMPLE: NEP of a Si *pin* photodiode

A Si *pin* photodiode has a quoted NEP of 1×10^{-13} W Hz$^{-1/2}$. What is the optical signal power it needs for a signal to noise ratio (SNR) of 1 if the bandwidth of operation is 1GHz?
EXAMPLE: NEP of a Si pin photodiode

A Si pin photodiode has a quoted NEP of $1 \times 10^{-13} \text{ W Hz}^{-1/2}$. What is the optical signal power it needs for a signal to noise ratio (SNR) of 1 if the bandwidth of operation is 1GHz?

Solution

By definition, NEP is that optical power per square root of bandwidth which generates a photocurrent equal to the noise current in the detector.

$$\text{NEP} = \frac{P_1}{B^{1/2}}$$

Thus,

$$P_1 = \text{NEP}B^{1/2}$$

$$= (10^{-13} \text{ W Hz}^{-1/2})(10^9 \text{ Hz})^{1/2}$$

$$= 3.16 \times 10^{-9} \text{ W or } 3.16 \text{ nW}$$
EXAMPLE: SNR of a receiver

Consider an InGaAs pin photodiode used in a receiver circuit as in Figure 5.31 with a load resistor of 10 kΩ. The photodiode has a dark current of 2 nA. The bandwidth of the photodiode and the amplifier together is 1 MHz. Assuming that the amplifier is noiseless, calculate the SNR when the incident optical power generates a mean photocurrent of 5 nA (corresponding to an incident optical power of about 6 nW since \(R \) is about 0.8–0.9 nA/nW at the peak wavelength of 1550 nm).
EXAMPLE: SNR of a receiver

Consider an InGaAs pin photodiode used in a receiver circuit as in Figure 5.31 with a load resistor of 10 kΩ. The photodiode has a dark current of 2 nA. The bandwidth of the photodiode and the amplifier together is 1 MHz. Assuming that the amplifier is noiseless, calculate the SNR when the incident optical power generates a mean photocurrent of 5 nA (corresponding to an incident optical power of about 6 nW since R is about 0.8–0.9 nA/nW at the peak wavelength of 1550 nm).

Solution

The noise generated comes from the photodetector as shot noise and from R_L as thermal noise. The mean thermal noise power in the load resistor R_L is $4k_B TB$. If I_{ph} is the photocurrent and i_n is the shot noise in the photodetector then

$$\text{SNR} = \frac{\text{Signal Power}}{\text{Noise Power}} = \frac{I_{ph}^2 R_L}{i_n^2 R_L + 4k_B TB} = \frac{I_{ph}^2}{\left[2e(I_d + I_{ph})B\right] + 4k_B TB / R_L}$$

The term $4k_B TB / R_L$ in the denominator represents the mean square of the thermal noise current in the resistor. We can evaluate the magnitude of each noise current by substituting, $I_{ph} = 5$ nA, $I_d = 2$ nA, $B = 1$ MHz, $R_L = 10^4$ Ω, $T = 300$ K.
EXAMPLE: SNR of a receiver
Solution (continued)

Shot noise current from the detector = \[2e(I_d + I_{ph})B\]^{1/2} = 0.047 nA

\[
\text{Thermal Noise} = \left[\frac{4k_BTB}{R_L}\right]^{1/2} = 1.29 \text{ nA}
\]

Thus, the noise contribution from \(R_L\) is greater than that from the photodiode. The SNR is

\[
\text{SNR} = \frac{(5 \times 10^{-9} \text{ A})^2}{(0.047 \times 10^{-9} \text{ A})^2 + (1.29 \times 10^{-9} \text{ A})^2} = 15.0
\]

Generally SNR is quoted in decibels. We need 10log(SNR), or 10log(15.0) i.e., 11.8 dB. Clearly, **the load resistance has a dramatic effect on the overall noise performance.**
A linearly polarized wave has its electric field oscillations defined along a line perpendicular to the direction of propagation, z. The field vector E and z define a plane of polarization.

- The E-field oscillations are contained in the plane of polarization.
- A linearly polarized light at any instant can be represented by the superposition of two fields E_x and E_y with the right magnitude and phase.
A right circularly polarized light. The field vector \mathbf{E} is always at right angles to z, rotates clockwise around z with time, and traces out a full circle over one wavelength of distance propagated.
The Phase Difference

\[E_x = E_{xo} \cos(\omega t - k z) \]
\[E_y = E_{yo} \cos(\omega t - k z + \phi) \]

Examples of linearly, (a) and (b), and circularly polarized light (c) and (d); (c) is right circularly and (d) is left circularly polarized light (as seen when the wave directly approaches a viewer)
Elliptically Polarized Light

\[E_{xo} = 1 \]
\[E_{yo} = 2 \]
\[\phi = 0 \]

\[E_{xo} = 1 \]
\[E_{yo} = 2 \]
\[\phi = \pi/4 \]

\[E_{xo} = 1 \]
\[E_{yo} = 2 \]
\[\phi = \pi/2 \]
Polarizers

A polarizer allows field oscillations along a particular direction **transmission axis** to pass through

The wire grid acts as a polarizer

There are many types of polarizers
Randomly polarized light is incident on a Polarizer 1 with a transmission axis TA_1.
Emerging light from Polarizer 1 is linearly polarized with E along TA_1.
Light is incident on Polarizer 2 (analyzer) with a transmission axis TA_2 at an angle θ to TA_1.
Detector measures the intensity of the incident light.

Malus’s Law

$$I(\theta) = I(0) \cos^2 \theta$$
Optical Anisotropy

A line viewed through a cubic sodium chloride (halite) crystal (optically isotropic) and a calcite crystal (optically anisotropic)
Liquids, glasses and cubic crystals are optically anisotropic.

The refractive index is the same in all directions for all polarizations of the field.

Sodium chloride (halite) crystal
Many crystals are optically anisotropic.

The calcite crystal has two refractive indices.

The crystal exhibits double refraction.

This line is due to the “extraordinary wave”

This line is due to the “ordinary wave”

A calcite crystal

Photo by SK
Images viewed through a **calcite crystal** have orthogonal polarizations. Two polaroid analyzers are placed with their transmission axes, along the long edges, at right angles to each other. The ordinary ray, undeflected, goes through the left polarizer whereas the extraordinary wave, deflected, goes through the right polarizer. The two waves therefore have orthogonal polarizations.
Principal refractive indices of some optically isotropic and anisotropic crystals (near 589 nm, yellow Na-D line)

<table>
<thead>
<tr>
<th>Optically isotropic</th>
<th>$n = n_o$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass (crown)</td>
<td>1.510</td>
</tr>
<tr>
<td>Diamond</td>
<td>2.417</td>
</tr>
<tr>
<td>Fluorite (CaF$_2$)</td>
<td>1.434</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uniaxial - Positive</th>
<th>n_o</th>
<th>n_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice</td>
<td>1.309</td>
<td>1.3105</td>
</tr>
<tr>
<td>Quartz</td>
<td>1.5442</td>
<td>1.5533</td>
</tr>
<tr>
<td>Rutile (TiO$_2$)</td>
<td>2.616</td>
<td>2.903</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uniaxial - Negative</th>
<th>n_o</th>
<th>n_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcite (CaCO$_3$)</td>
<td>1.658</td>
<td>1.486</td>
</tr>
<tr>
<td>Tourmaline</td>
<td>1.669</td>
<td>1.638</td>
</tr>
<tr>
<td>Lithium niobate (LiNbO$_3$)</td>
<td>2.29</td>
<td>2.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biaxial</th>
<th>n_1</th>
<th>n_2</th>
<th>n_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mica (muscovite)</td>
<td>1.5601</td>
<td>1.5936</td>
<td>1.5977</td>
</tr>
</tbody>
</table>
Optical Indicatrix

LEFT: Fresnel's ellipsoid (for $n_1 = n_2 < n_3$; quartz)

RIGHT: An EM wave propagating along OP at an angle q to the optic axis.
Optical Indicatrix

\[\frac{1}{n_e(\theta)^2} = \frac{\cos^2 \theta}{n_o^2} + \frac{\sin^2 \theta}{n_e^2} \]
Wave Propagation in a Uniaxial Crystal

(a) Wave propagation along the optic axis.
(b) Wave propagation normal to optic axis.

\[\begin{align*}
E_o &= E_{o\text{-wave}} \quad \text{and} \quad E_e = E_{e\text{-wave}} \\
Z &= \text{Optic axis}
\end{align*} \]
(a) Wavevector surface cuts in the xz plane for o- and e-waves.

(b) An extraordinary wave in an anisotropic crystal with a k_e at an angle to the optic axis. The electric field is not normal to k_e. The energy flow (group velocity) is along S_e which is different than k_e.

Power Flow in Extraordinary Wave
An EM wave that is off the optic axis of a calcite crystal splits into two waves called ordinary and extraordinary waves. These waves have orthogonal polarizations and travel with different velocities. The o-wave has a polarization that is always perpendicular to the optical axis.