Outline

- Announcements
- Review Layering
- Student Presentation
- Client-Server Computing
- Student Presentation
- SUN Case
Announcements

- **News Folio 2 DUE 11/9**
 - Include printouts/hardcopies of the articles

- **Midterm 11/9**

- **Homework 3** will be posted Wednesday and will be due on 11/14/2011

- **For next time read:**
 - *Chapter 6 Messerchmitt*
Announcements

- Upcoming presentations:

- 11/2
 - ??
 - ??

- 11/7
 - ??
 - ??
Sources for business paper

- You should cite at least 5 non-web sources
 - Ideally a lot more!
 - A list of sources is included in slides for Lecture 1

- If an article is available on-line and also in print, you should cite the print version!!!!

- Only cite a website if you are sure there is no print version of the material available.
 - Your citation of the print version may also indicate a website where the same article is available.

- Wikipedia is a nice source for gaining some background knowledge on your research or find links to other sources BUT is not always 100% accurate/true, particularly on matters of opinion.
Citing Sources

- More than thirty words verbatim must be cited.

- Any facts or figures that are not your own must be cited in the body of the text!!!!. For example:
 - Ebay’s revenues in US Revenues in 2002 were $1.39 billion [1].

- Any Tables of figures must be cited!!
 - You can create tables/charts based on your findings
“Companies that have deployed Internet technology have been confused by distorted market signals, often of their own creation.”

References:

Review: Simplified infrastructure layering

<table>
<thead>
<tr>
<th>Application</th>
<th>Middleware</th>
<th>Operating system</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed object management</td>
<td>Database management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network software</td>
<td>File system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network equipment</td>
<td>Storage peripherals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td>Storage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Student Talks

- Case presentation (Alibris)
 - Alex Chan
Client-Server Computing

Two host Architecture
Three Tier Client Server Architecture
N-Tier Client Server Architecture (Sun)
Two Host Architectures

- **Client-Server**
 - Attractive for information access and organizational applications

- **Peer-to-Peer (P2P)**
 - Appropriate for direct/immediate applications where no centralized application logic is needed
Two-tier client/server

Local-area network

desktop computer

Server/
Mainframe

file service
Peer to Peer (P2P)

Slide adapted from slides for *Understanding Networked Applications*
By David G Messerschmitt. Copyright 2000. See copyright notice
Peer to Peer (P2P)

- Each peer provides the same functionality
 - A P2P Network relies on
 - computing power
 - bandwidth of each peer
 - Ad-hoc connections: Each peer joins/leaves the network at any time

- What is P2P good for?
 - File sharing
 - Video Conferencing
 - Internet telephony
 - Etc.
Many organizational applications incorporate mission-critical databases

Need to separate data from the applications that access them
- Centralized storage
- Security
- Fault tolerance
- Data shared across many applications
Host architecture

Client

Web browser

HTTP

Web server

Application logic

Databases and DBMS

Application partition

Slide adapted from slides for *Understanding Networked Applications*
By David G Messerschmitt. Copyright 2000. See copyright notice
Scalability

- Need to serve multiple customers at the same time
- Customer base can grow large

- Many identical application servers
 - Each user session carried by a single server
 - Each server can handle a limited number of clients

- More than one databases
 - Storing different kinds of data (e.g. customers, orders, products, etc.)
Web server

Customer logic

Databases

Customer

Merchandise

Orders

Web browser

Consumer e-commerce

Inter-enterprise e-commerce

Fullfillment logic

Outside links

Acquirer bank

Book distributors

Book merchant

Slide adapted from slides for *Understanding Networked Applications* by David G Messerschmitt. Copyright 2000. See copyright notice.
C/S vs. P2P

<table>
<thead>
<tr>
<th>Types of computers:</th>
<th>Powerful computers used as servers. Different machines from clients.</th>
<th>Each peer is both a client and a server.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of network:</td>
<td>Predefined number/topology of servers. Clients can connect/leave any time.</td>
<td>Ad-hoc connections.</td>
</tr>
<tr>
<td>Communication:</td>
<td>To and from the server.</td>
<td>Among peers.</td>
</tr>
<tr>
<td>Network relies on:</td>
<td>Computing power/availability of a limited number of servers.</td>
<td>Computing power/Bandwidth of each peer.</td>
</tr>
</tbody>
</table>

- **Most P2P applications also have a C/S part**
 - E.g Napster, IRC
 - P2P File sharing/Transfer
 - C/S searching
Sun Case
(N-tier C/S)

- What does Sun make?
 - Workstations
 - Servers
 - Software
How Successful had Sun been up to 1998?

- Founded in 1982
- Open Standards Workstation
 - Unix Operating System (Solaris)
- 1988 - Revenues $1 billion
- 1993 - Market value $3.6 billion
 - Known for its workstations (addressing engineers)
- 1997 - Jumped from 3rd to 1st in Unix Server Market.
 - Achieved a 75\% year-over-year increase in total server shipments
- Designed its own hardware/software:
 - SPARC microprocessor, Solaris OS, Networking capabilities TCP/IP*
- Scalable, Reliable network computing for large corporations
 - ERP systems
 - Intranets (SCM, email, file directories etc)

*Stands for Transfer Control Protocol / Internet Protocol
Java

- 1995 - Sun introduces Java Programming Language
 - Portable between computers with different hardware/operating system platforms
 - JVM: Java Virtual Machine
 - Easy to write programs in
 - Easier re-use: "Write once, run everywhere"
 - Also somewhat portable ("Learn once, work anywhere"), but that objective was less well met.

- And, programs were slow
- Constant updates on JDK library
 - Programmers had to update to current versions
- Some felt that language was not yet mature
Java Applets

- Key feature of Java

- Applets: chunks of Java code
 - Usually embedded in other applications, e.g. Web Pages
 - Initially enabled animations on web pages
 - Later used to facilitate e-commerce applications, in cellular phones, etc.

- Applets are downloaded through the browser
 - Only what and when was needed
 - No need to keep a copy on client!

- Servlets
 - One can think of them as server-side applets
In the meantime, Microsoft...

- Dominated Desktop software (mid 90’s)
 - Users familiar with Windows, Office, etc.

- Windows NT servers
 - Fine for small intranets, but “not industrial strength” (Microsoft would disagree...)
What problems did the micro era produce?

- Desktops are expensive to maintain
 - TCO for windows PC $9900!

- Every PC had a lot of software that had to be maintained
 - Office, Windows, etc...

- Small differences, like the order in which software is installed, could make different PCs behave differently!

- Keep all PCs in organization updated with current/same software releases
 - Compatibility issues
In the Networking Era...

- These “bloated” PCs are networked and termed *fat clients*.

- But networking of PCs offered the possibility of
 - putting most of the functionality into servers
 - getting rid of much of the software on the client

- These clients would be called *thin clients*.
 - Sun, Oracle, and others saw it as the future.
Hardware for thin clients

- A **Network Computer (NC)** – a computer with minimal hardware that depends on a network connection to a server to function
 - Trademark of ORACLE, used by ORACLE, SUN, IBM, Acorn (ORACLE brand)
 - Be careful not to confuse it with the phrase “networked computer!”
 - Example: Sun's JavaStation (1996-2000)
- It is the hardware one would use to implement a **thin-client computing model**:
 - Store desktop on the network
 - Typically diskless (!)
 - Send desktop via browser to the client
- Fewer unique "instances" of working environment
In the meantime...

NetPC was a PC introduced by Microsoft and Intel in 1996 to compete with NC (which often didn’t use an Intel CPU)

- Same software as a normal PC
- Did not allow users to install their own software
- NetPC died out
- Features of it, and Microsoft’s Zero Administration Kit, live on in today’s version(s) of Windows.
Microsoft Vision

- Keep “fat-client” model
- Add some features to Windows to reduce administration costs
Microsoft vs. Java

- Announced that will “embrace and extend” promising technologies and emerging open standards

- **1996: Sun licenses Java to Microsoft to integrate into Explorer**
 - Microsoft downplays Java’s importance
 - Did not deliver compatible implementation of Java in its products
 - Customers were frustrated since the Java-components would not work

- Includes Java in its **programming platform**
 - BUT incorporates proprietary components making it impossible to run on different OS
Sun's Vision

- “Thin Client” model
- Application Servers with Applications written in Java
 - Applets/Servlets
- NCs could retrieve applications from application server as needed
- Applications compatible with any NC hardware and OS
- Applications could be fixed, added, updated at the server level, rather than maintaining each PC
SUN 3 - Tier

Exhibit 1 Three-tier Architecture

Tier One
- Client Applets
- Client Hardware

Tier Two
- Applets
- App Server
- HTTP

Tier Three
- Database
- JDBC
- RMI

Asia
- Tier Three

United States
- Tier Three

Europe
- Tier Three

JDBC: Stands for Java Database Connectivity. It is a programming interface that lets Java applications access a database via the SQL language.

RMI: Stands for Remote Method Invocation. It is the method by which a remote Java object from one location can be invoked from other Java virtual machines.

HTTP: Stands for HyperText Transport Protocol. It is the communications protocol used to connect to servers on the World Wide Web.
Sun N-tier

Tier One
- Client
- Client
- Client

Tier Two
- Webtop Server
- 1st time Servlet sent
- High latency servlet talks back & forth
- Applet cached
- 1st time, applet sent

Tier Three
- Webtop Server
- App Server
- Database
- App server talks to central database
- If bug found, change code here. Next time, corrected applet is sent down

Asia

United States

Europe
Sun N-Tier

Step 1: The user logs into his client and calls down an application. This message is sent to the Application Server.

Step 2: An initial applet is sent to the client. At the same time a servlet is sent to the Webtop Server.

Step 3: The applet talks back and forth with the Webtop Server via the LAN.

Step 3: At the same time the servlet talks back and forth with the App Server via a WAN.

Step 4: As new data is received (i.e., a new customer's name) the App Server communicates with the database to update that information.

Remote: The database and App Server communicate with the Webtop Server via a WAN.

Local: The Webtop Server and client communicate via a LAN.

Exhibit 3 How the N-tier Architecture Works
Sun's Performance

<table>
<thead>
<tr>
<th>Year</th>
<th>Net Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>355.8</td>
</tr>
<tr>
<td>1995</td>
<td>476.4</td>
</tr>
<tr>
<td>1996</td>
<td>762.4</td>
</tr>
<tr>
<td>1997</td>
<td>762.9</td>
</tr>
<tr>
<td>1998</td>
<td>1,031.3</td>
</tr>
<tr>
<td>1999</td>
<td>1,854.0</td>
</tr>
<tr>
<td>2000</td>
<td>927.0</td>
</tr>
<tr>
<td>2001</td>
<td>(587.0)</td>
</tr>
<tr>
<td>2002</td>
<td>(3,429.0)</td>
</tr>
<tr>
<td>2003</td>
<td>(388.0)</td>
</tr>
<tr>
<td>2004</td>
<td>(106.0)</td>
</tr>
</tbody>
</table>
Today

- 3-tier model common.
- Sun’s version of 4-tier model not-common.
- N-tier model where Webserver and Application Server on separate equipment also common.
- Sun’s hardware business not strong.
 - Linux on cheap PCs most common servers
 - Microsoft desktops replacing Sun workstations
Today

- **Oracle bought Sun (and incidentally, Java)**

- **Java**
 - Common in Server implementations
 - Example: Java Servlet implementing application logic in a banking application.
 - Often used to push simple applets onto client
 - Not common
 - For “big” desktop applications
 - Other languages, e.g. C/C++ still faster
 - Microsoft is still in business...
Modularity and Layering
Application Architecture Design

- **The most important step**
 - Hardest to change
 - Influences everything that follows

- **Conceptualization**
 - What is it you are trying to do?

- **Example Concept:**
 - Small HHC for flight attendants.
 - HHC tells flight attendants which passengers are higher priority.
 - Who paid the highest fares
 - Who has been a more valuable customer in past
 - Flight attendant discriminates based on this
 - Free drinks, meals, and pillows to valuable customers
Example Concept:
Architecture

- What is the complexity of such a problem?
- How do you begin to architect a solution for a problem like this?
- Break it into modules!
- What is a “good” architecture?
Architecture

HEADQUARTERS
Airline Dataserver

Airline Intranet

HHC Server

Wireless Link

HHC
When a module is composed of sub-modules, the architecture is **hierarchical**.
We are using a **layered architecture** as well. Allows reuse of previously built infrastructure.
Properties of Modularity

- Functionality
- Hierarchy
- Separation of concerns
- Interoperability
- Reusability