TIM 50 - Business Information Systems
Lecture 18
Instructor: Terry Allen
UC Santa Cruz
11/28/2011

Outline
- Announcements
- Markup Languages
- Networks
- Student Presentations
- Akamai Case

Announcements
- Reading
 - Messerschmitt Ch 10.1 - 10.2
 - American Airlines

Markup languages
- A markup language describes the structure of a document
 - Based on tags
 - Tags denote structural elements like sections, subsections, figures, etc
- Internationally standardized, so application independent

Documents and XML
- Enterprises create/store/exchange documents
- When using DBMS, documents are stored in their entirety
 - BUT their internal structure is not visible
- The WWW as a communication medium
 - Non-traditional database
 - Billions of documents stored/exchanged
 - Need for identifying/processing documents' internal structure
Family lineage

- SGML
 - Standardized in mid 80s by ISO
 - Introduced in Early 90s
 - Emphasizes formatting and presentation of documents
- HTML
 - Both are standardized by W3C
 - Emphasizes structure of documents
- XML
 - Proposed in mid 90s
 - Emphasizes purpose-and-industry-specific extensions
- XQuery, XPath
 - Query languages for XML data (W3C standards)

Example: HTML

```html
<html>
<h1> Super Widget </h1>
<h2> Widgets Incorporated </h2>
<br />$300</p>
</html>
```

Super Widget

Widgets Incorporated

123456789

$300

Networks

- Click to add text

What are some examples of communications networks?

- Public Telephone Network
- Internet
- LANs (Local Area Networks)

What does a network do?

- Transport data from one host to another
 - Host allocation
 - Routing
- Millions of users/applications/hosts share the same network
 - Resource sharing
 - Congestion control
Network Architecture

Network architectures are layered
Each layer
- uses the services of the layers below
- To offer more advanced services to layer above
Allows layers to be designed independently
We will talk about 3 layers next...

Link Layer

Make a Frame link out of a bit link
- Instead of endless sequence of 1s and 0s, we want
 distinct "packages" of data that are separate from each
 other
Say we want to send 2 Frames with data
- 01010101010111010 and 10101010101101010
- Concatenate them and send them as a sequence?
How can the receiver tell where the new frame
begins?
Solution: insert a special sequence at the start of
frame: for example: 01111110

Link Layer (cont’d)

Also does error detection/correction
- Insert extra information the helps the receiver
to determine if the data has been corrupted.
- Example: parity bit
 - Sender adds a 1 or zero to end of data so number of
 ones is always odd
 - 1001
 - or 1000
- If receiver counts an even number of ones, than it
 knows the data was corrupted.

Error Detection

- Simple parity bit scheme prolem?
 - Cannot detect if two or any even number of bits
 were modi
 fied during the transmission.
- CRC (for cyclic redundancy code): more
 sophisticated error detection code
 - sending node: calculates the CRC bits (typically 32 bits) from
 the previous bits in the packet
 - receiving node: performs the same calculation and compares
 the result with the error detection bits in the packet:
 - if they diff
 er, the receiving node knows that some error occurred and
 discards the corrupted packet.

More Link Layer.. -- Ethernet

Want to allow multiple hosts to share a link

How do they avoid talking at the same time?
Don’t transmit if you hear another host
transmitting
If there is a collision, stop wait a random amount of
time, and try again
This is a Medium Access Control (MAC) Protocol
Ethernet Continued

How do the hosts on this Ethernet identify each other?

Each host (actually each interface)
- has a globally unique MAC address
- Cannot be changed

Host A
Host B
Host C
Host D

Ethernet Hub

Hub broadcasts packets on a link to all others
As if all hosts connected to single link
- We say it is a Single collision domain
Only one host can talk at a time

Routing in the Internet

Many feasible paths from source to destination.

Host A
Host B
Host C
Recall: three ways of locating things (Ch. 11)

Name
- "John Smith"
Address
- "1156 High St., Santa Cruz, CA"
Reference
- "Postmaster of UCSC, Santa Cruz, CA"

Name services

1. name
2. address or reference
3. interaction

E.g. Map a host name (URL) to its IP address

Domain Names

IP addresses are inconvenient for people
- e.g. 128.55.156.273
- 32 bits hard to remember
- 128 bits very hard to remember
Domain names
- e.g. argus.eecs.berkeley.edu
- Easier to remember than IP addresses
- However, we need some way of mapping domain names to IP addresses.

Domain Name System (DNS)

Hierarchy in Addresses vs. Names

Addresses hierarchical in topology
- Maximize "wild cards" and distribute address administration

Names hierarchical in administration
- Single administered organizations often distributed topologically (e.g. ibm.com)
Routing

Routing
- Updating the routing table
- Objective: each packet gets closer to destination

Packet forwarding
- Transmitting each packet on the appropriate output link
- Based on routing table

Routing Algorithms

Routing Table has Wild Cards
Issues In Networking

- **Sharing of Limited Resources**
 - How Should A and B share a link with limited bit rate?

 ![Diagram of A and B sharing a link with limited bit rate]

 Source A \hspace{2cm} C bits per second \hspace{2cm} Source B

 Destination A \hspace{2cm} Destination B

- **Time Division Multiplexing**
 - Gives each connection the use of the link a fixed fraction of time
 - Fixed fraction of resources reserved for each connection
 - Technology called *circuit switching*

 ![Diagram of time division multiplexing]

 Source A \hspace{2cm} \(t \) \hspace{2cm} Source B

 Time \hspace{1cm} Destination A \hspace{2cm} Destination B

- **Problem**
 - When A is silent, A’s fraction of link goes unused.

Transport Protocols

The Internet is unreliable

- It will make a "best effort" to get your packet to its destination

Packets can be lost because of

 - Congestion
 - Link errors
 - Routing problems

![Layered network model]

| Application | Presentation | Session | Transport | Network | Link | Physical |
Transmission Control Protocol (TCP)

Retransmit mechanism for reliability
- Receiver sends acknowledgements to sender
- If a packet is lost, source fails to get ACK, and then retransmits.

Congestion control
- If congestion perceived (by lost packets)
 - Source reduces its send rate
 - When loss, sender reduces send rate by half
 - Otherwise slowly increases

Network congestion

Traffic can overload links
- Failure of statistical multiplexing

Congestion must be limited in some fashion

Congestion instability

Congestion Control

When networks are congested, certain sessions (Source-destination pairs) should reduce offered rates.
- Today all TCP sessions slow down when they detect packet losses.
- UDP sessions do not slow down.

What are some alternative strategies?
- Have those whose applications aren't as sensitive slow down more?
 - How would we know which are less sensitive
kb, mb and others...

We count in base 10 by powers of 10:

\[10^1 = 10, \quad 10^2 = 100, \quad 10^3 = 1000, \quad 10^6 = 1000000 \]

Computers count by base 2:

\[2^1 = 2, \quad 2^2 = 4, \quad 2^3 = 8, \quad 2^{10} = 1024, \quad 2^{20} = 1048576 \]

So in computers, the following units are used:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kilobyte (KB)</td>
<td>1,024 bytes</td>
</tr>
<tr>
<td>1 megabyte (MB)</td>
<td>1,048,576 bytes (1,024*1,024)</td>
</tr>
<tr>
<td>1 gigabyte (GB)</td>
<td>1,073,741,824 bytes</td>
</tr>
<tr>
<td>1 terabyte (TB)</td>
<td>1,099,511,627,776 bytes</td>
</tr>
<tr>
<td>1 petabyte (PB)</td>
<td>1,125,899,906,842,624 bytes</td>
</tr>
</tbody>
</table>

Akamai Case (cont’d)

Bottlenecks in the Internet architecture

- **First mile**
 - Web and application server performance
 - Router and Switch capacity
- **Backbone**
 - Many routers for data to go through (17 to 20 routers)
- **Peering**
 - Dumping traffic on other NSPs
- **Last mile**
 - IAP’s router or modem capacity
 - Limited transmission rates
 - Older computers

2 major problems:

- loss of packets (information)
- slow connections
Freeflow

- Deployed in 1999
- Akamai Infrastructure
 - 13000 servers in 954 networks by 2001
- Customers
 - Large Commercial Websites

Competition

- Hosting firms (substitute)
 - Exodus
- Other CDNs
 - Sandpiper, Adero, Mirror Image
- Content Alliances
 - Akamai's competitors banded together to share networks

Akamai Case

- How did Akamai differentiate from its competitors after the dot-com recession of 2000?
- Was it a successful move? Was it a costly decision for Akamai? Why?

2001 Market Changes

Bad

- Dot-coms bust
- Customers leave
 - "churn rate goes to 22% per quarter"

Good

- Hosting firms go bust (exodus)
- Some CDN competitors go bust.
- Competing CDN alliances mired in problems

EdgeSuite

- Assemble and Present dynamic pages at edges rather than just deliver heavy objects
- Pricing - higher than old service
- Soon EdgeSuite dominated revenue